Building Your
Own Machine Vision

Eyes are important for humans to see a beautiful world. In this chapter, we will
explore how to make a machine see by deploying a camera. We will start to
understand machine vision by detecting and tracking an object model by training
our machine. Several camera modules will also be reviewed:

We explore the following topics:

Introducing machine vision

Introducing OpenCV library

Deploying OpenCV library to Raspberry Pi

Building a simple program with OpenCV

Working with camera modules

Introducing pattern recognition for machine vision
Building a tracking vision system for moving objects

Building your own IoT machine vision

Introducing machine vision

A machine vision is a machine with camera capabilities and an understanding of
what objects are. The machine uses its camera to sense physical objects around its
environment. Machine vision or computer vision is a field where a machine acquires,
analyzes, and understands a still image or video. This field involves knowledge such
as image processing, pattern recognition, and machine learning.

[83]

Building Your Own Machine Vision

The pattern recognition and machine learning fields helps us to teach our machine
to understand images. For instance, when we show a still image with people

inside a car to the machine, then the machine should identity which are the people.
Furthermore, in some cases, the machine also should guess the person in an image.
From a pattern recognition and machine learning view, we should register the
person so the machine can know the person in the image after identifying the person
in an existing image.

To build a machine vision, we use the general design that is shown in the
following figure:

T TTTEEEETETETTTTTT TN |
i i i
1 1 1 o 1
Eaitieta E> 1 At Bescaudn :Ei;: Features Classification, :
: b & 8 : 1 Extraction identification :
1
: 1 1 1
e e eeeeeeaEs
Image Processing Pattern recognition, machine learning

Firstly, we acquire image collection from a camera. Each image will be processed for
image processing tasks such as removing noise, filtering or transforming. Then, we
do feature extraction for each image.

There are various feature extraction techniques depending on your purposes.
After obtaining the features of images, we identity and recognize objects in an
image. Pattern recognition and machine learning take part in this process.

I won't explain more about pattern recognition and machine learning. I recommend
you to read a textbook related to pattern recognition and machine learning. In this
chapter, I'm going to show you how to achieve machine vision by applying pattern
recognition and machine learning into IoT devices.

Introducing the OpenCYV library

The OpenCV (Open Computer Vision) library is an open source library that

is designed for computational efficiency and with a strong focus on real-time
applications. This library is written in C/C++ and also provides several bindings
for other programming languages. The official website for OpenCV is http://www.
opencv.ord.

[84]

Chapter 3

The OpenCV library provides a complete library starting from basic computation
and image processing to pattern recognition and machine learning. I notice several
research papers use this library for simulation and experiments, so this library is a
good point for starting our project in machine vision/computer vision.

Currently, the OpenCV library is available for Windows, Linux, Mac, Android and
iOS. You can download this library at http://opencv.org/downloads. html. I'll
show you how to deploy OpenCV on Raspberry Pi with Raspbian OS.

Deploying OpenCV on Raspberry Pi
In this section, we will deploy the OpenCV library on Raspberry Pi. I use

Raspbian Jessie for testing. We're going to install OpenCV from source code
in Raspberry Pi board.ss

Let's start to build the OpenCV library from source code on Raspberry Pi. Firstly, we
install development libraries. Type these commands on the Raspberry Pi terminal:

$ sudo apt-get update
$ sudo apt-get install build-essential git cmake pkg-config libgtk2.0-dev
$ sudo apt-get install python2.7-dev python3-dev

We also need to install the required matrix, image and video libraries. You can type
these commands:

$ sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpngl2-
dev

$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev
libv41l-dev

$ sudo apt-get install libxvidcore-dev libx264-dev

$ sudo apt-get install libatlas-base-dev gfortran

The next step is to download the OpenCV source code via Git. You can type
these commands:

$ mkdir opencv

$ cd opencv

$ git clone https://github.com/Itseez/opencv.git

$ git clone https://github.com/Itseez/opencv_contrib.git

We use a Python virtual environment to deploy OpenCV on Raspberry Pi using
virtualenv. The benefit of this approach is that it isolates our existing Python
development environment.

[85]

Building Your Own Machine Vision

If your Raspbian hasn't installed it yet, you can install it using pip.

$ sudo pip install virtualenv virtualenvwrapper

$ sudo rm -rf ~/.cache/pip

After that, you configure virtualenv in your bash profile:
$ nano ~/.profile

Then, add the following scripts:

export WORKON_ HOME=S$HOME/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh

Save your bash profile file if finished.

To create a Python virtual environment, you can type this command:
$ mkvirtualenv cv

This command will create a Python virtual environment, called cv.
If you use Python 3, you can create it with the following command:

$ mkvirtualenv cv -p python3

You should see (cv) on your terminal. If you close the terminal or call a new
terminal, you should activate your Python virtual environment again. Type
these commands:

$ source ~/.profile

$ workon cv

A sample of a form of Python virtual environment, called cv, can be seen in the
following screenshot:

® @ agusk — pi@raspberrypi: ~ — ssh pi@192.168.0.12 — 80x21

pi@raspberrypii~ $ source ~/.profile
pi@raspberrypi:~ $ workon cv
(cv) pi@raspberrypi:~ $ §

[86]

Chapter 3

Inside Python virtual terminal, we continue to install NumPy as the required library
for OpenCV Python. We can install this library using pip.

$ pip install numpy

Now we're ready to build and install OpenCV from source. After cloning the
OpenCV library, you can build it by typing the following commands:

cd ~/opencv/

mkdir build

cd build

cmake -D CMAKE BUILD TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX:/usr/local \
-D INSTALL C EXAMPLES=ON \

$
$
$
$

-D INSTALL PYTHON EXAMPLES=ON \
-D OPENCV_EXTRA MODULES_ PATH=~/opencv/opencv_contrib/modules \
-D BUILD EXAMPLES=ON ..

Furthermore, we install the OpenCV library on our internal system from
Raspbian OS.

$ make -j4

$ sudo make install

$ sudo ldconfig

If done, we should configure the library so Python can access it through Python
binding. The following is a list of command steps for configuring with Python 2.7:

$ 1s -1 /usr/local/lib/python2.7/site-packages/
$ cd ~/.virtualenvs/cv/lib/python2.7/site-packages/
$ 1n -s /usr/local/lib/python2.7/site-packages/cv2.s0 cv2.so0

If you use Python 3.x, for instance Python 3.4, you do the following steps on the
terminal. Consider if you use Python 3.4.x:

ls /usr/local/lib/python3.4/site-packages/

cd /usr/local/lib/python3.4/site-packages/

sudo mv cv2.cpython-34m.so cv2.so

cd ~/.virtualenvs/cv/lib/python3.4/site-packages/

w v » »

ln -s /usr/local/lib/python3.4/site-packages/cv2.so0 cv2.so

[87]

Building Your Own Machine Vision

The installation process is over. Now we need to verify whether our OpenCV
installation is correct by checking the OpenCV version.

$ workon cv
$ python
>>> import cv2

>>> cv2._ version

You should see the OpenCV version on the terminal. A sample of program output is
shown in the following screenshot:

@ @ agusk — pi@raspberrypi: ~/opencv — ssh pi@192.168.0.12 — 80x21

(cv) pi@raspberrypi:~/opencv $ python

Python 2.7.9 (default, Mar 8 2015, @0:52:26)

[GCC 4.9.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import cv2

>>> cv2.__version__

'3.1.0-dev’

>>>

The next demo displays an image file using OpenCV. For this scenario, we can use
the cv2. imshow () function to display a picture file.

For testing, log into the Raspberry Pi desktop to execute the program. Using a text
editor, you can type the following scripts:

import numpy as np
import cv2

img = cv2.imread('circle.png')
cv2.imshow ('My photo', img)
cv2.waitKey (0)
cv2.destroyAllWindows ()

[88]

Chapter 3

[use circle.png file as a picture source. You can find it in this book's source codes.
Save these scripts into a file called ch03_hello_opencv.py. Then, open the terminal
inside your Raspberry Pi desktop and type this command:

$ python ch03_hello opencv.py

If successful, you should see a dialog that displays a picture:

= ’* @ | pi@raspberrypi: ~/Do.. ‘;:My photo ‘ - uﬂ

EHEE

oﬂOS

The picture dialog shows up because we called cv2.waitKey (0) in our code. Press
any key on the picture dialog if you want to close the dialog.

After received a clicked key event, we close the dialog by calling the cv2.
destroyAllWindows () function.

[89]

Building Your Own Machine Vision

Building a simple program with OpenCV
There are many program samples that show how to use OpenCV using Python. In
our case, we build a simple program to detect a circle in a still image.

Consider we have the following image, which is used for testing. You can find the
image file in the source code files, called circle.png.

To find a circle in a still image, we use circle Hough Transform (CHT). A circle can
be defined as follows:

(x—a)*+ (y—b)2=r?

(a,b) is the center of a circle with radius . These parameters will be computed using
the CHT method.

[9o0]

Chapter 3

Let's build a demo!

We will build a program to read an image file. Then, we will detect a circle form in
an image using the cv2.HoughCircles () function.

Let's start to write these scripts:

import cv2
import numpy as np

print ('load image')

orig = cv2.imread('circle.png')

processed = cv2.imread('circle.png', 0)
processed = cv2.medianBlur (processed, 19)

print ('processing...")
circles = cv2.HoughCircles (processed, cv2.HOUGH_GRADIENT, 1, 70,
paraml=30,
param2=15,
minRadius=0,
maxRadius=50)

circles = np.uintlé6 (np.around(circles))
for (x, y, r) in circles[0, :]:
cv2.circle(orig, (x, y), ¥, (0, 255, 0), 2)

print ('completed')

print ('writing to a file..')
cv2.imwrite ('circle_process.png', orig)
print ('done')

Save these scripts into a file called ch03_circle.py.

To run the program, type this command on the Raspberry Pi terminal:

$ python ch03_circle.py

Make sure circle.png and ch03_circle.py are located in the same folder.

[o1]

Building Your Own Machine Vision

You should see some text on the terminal. You can see the sample of program output
in the following screenshot:

® (' ® agusk — pi@raspberrypi: ~/Documents/book — ssh pi@192.168.0.12 — 80x21
[(cv) pi@raspberrypi:~/Documents/book $ 1s]
Adafruit_Python_DHT ch@2_pymc. py mymodel.pyc

alpha.png ch@3_circle.py PID.py

beta.png ch@3_hello_opencv.py PID.pyc

ch@l_dht22.py circle.png pid_temperature.png

ch@l_led.py fuzzy_mem_temp_hum.png result.png

ch@1_pid.py matplotlib test_pid.py

ch@2_bayes_theory.py MCMC.pickle theta_3.png

ch@2_fuzzy.py mymodel. py

[(cv) pi@raspberrypi:~/Documents/book $ python ch®3_circle.py I
load image

processing...

completed

writing to a file..

done

(cv) pi@raspberrypi:~/Documents/book $ I

This program will detect a circle form in an image file. After finishing the detection
process, the program will generate a new image file, called circle_process.png.

If you open circle process.png file, you should see four circle drawings in the
image file, shown in the following figure:

Chapter 3

How does it work?

Firstly, we load OpenCV and NumPy libraries into our program:

import cv2
import numpy as np

We read the image file using cv2.imread () into two variables, orig and processed.
The processed variable is used to manipulate to find a circle. The image in
processed variable will changed due to the blurring process.

orig = cv2.imread('circle.png')
processed = cv2.imread('circle.png', 0)
processed = cv2.medianBlur (processed, 19)

cv2.medianBlue () is used to blur an image by defining a median value. The
parameter value should be an odd value, suchas 1, 3,5, 7.

To find circles in an image, we can use cv2.HoughCircles (). paraml and param2
values, which are defined based on this paper http://www.bmva.org/bmvc/1989/
avc-89-029.pdf.

circles = cv2.HoughCircles (processed, cv2.HOUGH_GRADIENT, 1, 70,
paraml=30,
param2=15,
minRadius=0,
maxRadius=50)

Draw all circles found on the original image, the orig variable:

circles = np.uintlé6 (np.around(circles))
for (x, y, r) in circles[0, :]:
cv2.circle(orig, (x, y), r, (0, 255, 0), 2)

The last step is to save our computation result into a file called circle_process.
png, using cv2.imwrite ():

cv2.imwrite('circle_process.png', orig)

Working with camera modules

In this section, we explore various camera modules for the Raspberry Pi board. There
are many camera models that fit your projects. Camera modules can be reviewed
based on what kind of Raspberry Pi interface is used to attach the modules.

Let's explore.

[93]

Building Your Own Machine Vision

Camera modules based on the CSl interface

The Raspberry Pi camera is the official camera board released by the Raspberry Pi
Foundation. This camera can be attached to the Raspberry Pi board through the CSI
interface. The Raspberry Pi Foundation also provides another camera model, the
Raspberry Pi NoIR Camera. This can work in low light (twilight) environments.

A form of Raspberry Pi Camera v2 and NoIR camera v2 can been seen in the
following figure:

[94]

Chapter 3

These modules are official camera devices for Raspberry Pi. To use a camera over
the CSI interface, we should enable it on Raspbian. You can configure it using the
raspi-config tool. Just type command on the Raspberry Pi terminal.

$ sudo raspi-config

After execution, you should see the raspi-config program, which is shown in the
tollowing screenshot:

. @ agusk — pi@raspberrypi: ~/Documents/book — ssh pi@192.168.0.12 — 80x 21

! Raspberry Pi Software Configuration Tool (raspi-config) !

1 Expand Filesystem Ensures that all of the SD card s
2 Change User Password Change password for the default u
3 Boot Options Choose whether to boot into a des
4 Wait for Network at Boot Choose whether to wait for networ
5 Internationalisation Options Set up language and regional sett
6 Enable Camera Enable this Pi to work with the R
7 Add to Rastrack Add this Pi to the online Raspber
8 Overclock Configure overclocking for your P
9 Advanced Options Configure advanced settings

@ About raspi-config Information about this configurat

<Select> <Finish>

Select the 6 Enable Camera option on the raspi-config tool. Then, click on Enable
Camera to activate the camera modules. If finished, you should be asked to restart
Raspbian. Restart Raspbian to complete the changed configuration.

Now you can use this camera with your program.

[95]

Building Your Own Machine Vision

Camera modules based on USB interface

Camera modules with a USB interface are common camera devices. This device is
usually called a webcam. You can easily find them in your local stores.

Image source: http://www.amazon.com/Microsoft-LifeCam-Cinema-Webcam-
Business/dp/B004ABQAFO/

A camera module with USB can be attached to the Raspberry Pi board through the
USB. For Raspberry Pi 3, you have four USB adapters, so you can attach four camera
modules based on USB.

Several camera module-based USBs can be recognized by Raspberry Pi including the
OpenCV library. You can find compatible USB webcams for Raspberry Pi on this site,
http://elinux.org/RPi_USB_ Webcams.

[96]

Chapter 3

Camera modules-based serial interface

If your IoT boards don't have a USB interface but do have UART/serial pins, you can
use a camera modules-based serial interface. The Grove-Serial Camera kit is one of
these, which is shown in the following figure:

Image source: http://www.seeedstudio.com/item detail.html?p id=1608

A camera module with UART interface can be attached to Raspberry Pi boards
through UART GPIO pins.

Camera modules with multi-interfaces

I found several camera module devices with multi-interfaces that support serial,
USB, SPI and 12C interfaces. This is a good point, because we can attach them in
our favorite boards.

[97]

Building Your Own Machine Vision

Pixy CMUcam is one of the camera modules with a multi-interface. You can read and
buy this module on the official website, http://cmucam.org. Some online stores also
sell this module. I got Pixy CMUcam5 board and pan/tilt module from SeeedStudio,

http://www.seeedstudio.com.

B -oom/plxystart

1Y

I'm going to share how to use the Pixy CMUcamb module with a Raspberry Pi board
in the last section.

[98]

Chapter 3

Accessing camera modules from the
OpenCV library

In the previous section, we used a still image as a source for the OpenCV library.
We can use a camera as the source of a still image. A camera generates video data,
which is a collection of still images. To access camera modules from the OpenCV
library, follow these steps:

1.

To access a camera from OpenCV, we can use the VideoCapture object.
We call read () to read a frame, which is a still of a frame.

For a demo, we use the camera USB drive. Just connect this device to the
Raspberry Pi board through the USB drive. Then, we write the following
scripts with your text editor:

import numpy as np
import cv2

cap = cv2.VideoCapture (0)
while True:
Capture frame-by-frame
ret, frame = cap.read()

Display the resulting frame

cv2.imshow('video player', frame)

if cv2.waitKey (1) & OxFF == ord('qg'):
break

cap.release ()
cv2.destroyAllWindows ()
Save these scripts into a file, called ch03_camera_player.py.

To run this program, you should enter the Python virtual environment,
which already deployed the OpenCV library.

Type this command:
$ python ch03_camera player.py

[99]

Building Your Own Machine Vision

6. If you succeed, you will have a dialog that shows streaming video from a
camera. A sample of program output can be seen in the following screenshot:

b | {i,} =] el ’_* (ﬁpi@raspbenypl:~/Dc..!:videoplayer \ = u@ 36 %, 10:07
¢ LIEIED

7. To exit or close the dialog, you can press a key Q.

If you see the function, cv2.videoCapture (0), call the attached camera.
If you attached more than one camera, call cv2.vVideoCapture (1) for the
second camera.

Introducing pattern recognition for
machine vision

Pattern recognition is an important part of machine vision or computer vision, to
teach a machine to understand the object in an image.

In this section, we explore a paper by Paul Viola and Michael Jones about Rapid
Object Detection using a Boosted Cascade of Simple Features. This paper describes a
machine learning approach for visual object detection.

[100]

Chapter 3

In general, the Viola and Jones approach is known as Haar Cascades. Their algorithm
uses AdaBoost algorithm with the following classifier:

T 1 =T
h(x) = 1 thlatht(x) > Eztzlat

0 otherwise

Fortunately, the OpenCV library has implemented Viola and Jones' approach to
visual object detection. Other people also contributed to data training from Haar
Cascades. You can find training data files on the OpenCV source code, which is
located on <opencv_source_codes >/data/haarcascades/.

You can now test detection of faces on an image using the Haar Cascades approach.
You can write the following scripts:

import numpy as np
import cv2

face cascade = cv2.CascadeClassifier('haarcascade frontalface default.
xml')

img = cv2.imread('children.png')
gray = cv2.cvtColor (img, cv2.COLOR BGR2GRAY)

faces = face cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
img = cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 255), 2)

cv2.imshow ('img', img)
cv2.waitKey (0)
cv2.destroyAllWindows ()

Save these scripts into a file called cho3_faces.py.

You also put files, haarcascade_frontalface_default.xml and children.png,
on the same path with the program. The haarcascade_frontalface_default.xml
file can be obtained from the <opencv_source codes>/data/haarcascades/ and
children.png file is taken from the source code of this book.

[101]

Building Your Own Machine Vision

Run this program on the terminal with the Raspberry Pi desktop by typing
this command:

$ python ch03_faces.py

After running, you should get a dialog with a picture. There are three faces detected,
but one is missing. In my opinion, Haar Cascades approach is still good even it's

not the best method. A sample of program output can be seen in the following
screenshot:

)

i e)‘ @] pi@raspberrypi ~ch...Ii:img

&

= @

1

[

fo.

How does it work?
Firstly, we load the required libraries and training data for Haar Cascades:

import numpy as np

import cv2

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.
xml')

We load a picture file for testing and then change the image color to gray:

img = cv2.imread('children.png')
gray = cv2.cvtColor (img, cv2.COLOR_BGR2GRAY)

[102]

Chapter 3

To detect a face, we call face_cascade.detectMultiScale () with passing image
vector, scale factor and minimum neighbors. If a detected face is found, we draw a
rectangle on the picture:

faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
img = cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 255), 2)

The last step is to show a picture and wait pressed key. If any key is pressed, a
picture dialog is closed.

cv2.imshow('img', img)
cv2.waitKey (0)
cv2.destroyAllWindows ()

Building a tracking vision system for
moving objects

In this section, we build a simple tacking vision system. We already learned how to
detect a face in an image. Now we try to detect faces on video.

The idea is simple. We change a still image as source to a frame image from a
camera. After calling read () from the videoCapture object, we pass the frame
image into face_cascade.detectMultiScale (). Then, we show it a picture
dialog. That's it.

For implementation, type these scripts:

import numpy as np
import cv2

face_cascade = cv2.CascadeClassifier ('haarcascade_frontalface_default.
xml'
cap = cv2.VideoCapture (0)
while True:
Capture frame-by-frame
ret, frame = cap.read()

gray = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
img = cv2.rectangle (frame, (x, y), (x + w, y + h), (0, 255,

255), 2)

cv2.imshow('face tracking', frame)

[103]

Building Your Own Machine Vision

if cv2.waitKey(l) & OxFF == ord('qg'):
break

cap.release ()
cv2.destroyAllWindows ()
Save this program into a file called ch03_faces_camera.py.

Now you can run this program on the terminal from the Raspberry Pi desktop.

$ python ch03 faces camera.py

After running, try to show your face. Then, the program should detect your face.
You can see the program output in the following figure:

You can modify this project by adding an LED as an indicator for which a face is
already detected.

How does it work?

This program runs as the previous program. We only change the image source from
the camera.

. fHcedracking EIEIE]

[104]

Chapter 3

Building your own loT machine vision

We already know Pixy CMUcamb5 as a camera module. In this section, we try to use
this module in our IoT project.

The following is a list of the required modules:

* Pixy CMUcamb Sensor, http://www.seeedstudio.com/item detail.
html?p_1id=2048

* Pan/Tilt for Pixy, http://www.seeedstudio.com/item_detail.html?p_
1d=2048

You also can obtain these modules on other online stores.

Deploying Pixy CMUcam5 on Raspberry Pi
In order to use Pixy CMUcamb, you should install the required libraries and

applications. Firstly, you can open the terminal on Raspberry Pi and type these
commands:

sudo apt-get install libusb-1.0-0-dev
sudo apt-get install gt4-dev-tools

sudo apt-get install gt4-gmake gt4-default
sudo apt-get install g++

sudo apt-get install swig

$
$
$
$
$
$ sudo apt-get install libboost-all-dev

You need the Pixy library and application from source code. Firstly, you download
the source code and then install PixyMon:

$ git clone https://github.com/charmedlabs/pixy.git
$ cd pixy/scripts
$./build pixymon src.sh

In order to use the Pixy library from Python, you can install Python binding.
Type this command on the path <pixy librarys/pixy/scripts:

$./build libpixyusb swig.sh

You need to configure to access Pixy over USB without a non-root user.
Type these commands:

$ e¢d ../src/host/linux/
$ sudo cp pixy.rules /etc/udev/rules.d/

Now you're ready to use Pixy CMUcamb.

[105]

Building Your Own Machine Vision

Assembly

To setup Pixy CMUcamb5 and Pan/Tilt, I recommend you read this guideline,
http://cmucam.org/projects/cmucam5/wiki/Assembling pantilt Mechanism.
The following is my assembly, shown in the following figure:

Updating the Pixy CMUcam5 firmware

Before you use the Pixy CMUcam5 module, I recommend you update the board
firmware. You can download it on http://cmucam.org/projects/cmucams/wiki/
Latest_release. For instance, you can download Pixy firmware 2.0.19 directly on
http://cmucam.org/attachments/download/1317/pixy firmware-2.0.19-
general . hex.

To update the firmware, you should run the PoxyMon application. Please unplug the
Pixy CMUcamb5 from Raspberry Pi. Then, press the white button on the top of the
Pixy CMUcamb board and plug the board in to Raspberry Pi through the USB. Please
keep pressing the white button until you get a folder dialog. Then release the white
button on Pixy CMUcamb5, and select the Pixy firmware file. Wait until the flashing
firmware is done.

[106]

Chapter 3

Testing

We start to test Pixy CMUcamb with Raspberry Pi. Several demos are provided to
show how Pixy CMUcam5 works. Let's start!

Loading streaming video

After we have deployed the Pixy CMUcamb application and library, we will obtain
the PixyMon application. It's a tool to manage our training data and can be found on
<pixy codess/build/pixymon/bin/.

Navigate to <pixy_codes>/build/pixymon/bin/, then type this command on the
terminal with Raspberry Pi in desktop mode.

$./PixyMon

If done correctly, you should see a PixyMon dialog, shown in the following
screenshot:

= Pixyhon CIEIE]

File Action Help

! PSR 7

response: 0 (0x0)
> runprog 8

response: 0 (0x0)

[107]

Building Your Own Machine Vision

If you don't see any picture on the dialog, you can click the red circle icon, which is
shown by the arrow. This puts the PixyMon application in streaming video mode.
The following screenshot is a sample of my program output:

.) = I | 7’ @ ‘-pl@raspberrypf. ~/pix. ::P!xyMon

= @[2s]osm

EIEE

File ‘Action Hel

'.‘m’:]

p

[108]

Chapter 3

Tracking an object

Pixy CMUcamb can track any object after the object is already registered. In this

section, we explore how to register a new object and then track it.

1. Plug Pixy CMUcamb into the Raspberry Pi board. Open the PixyMon

application. Show it any object you want to track.

IO
4

5 I

File Action Help

I—\ h‘;

response: 0 (0x0)
> runprog 8
response: 0 (0x0)

[109]

Building Your Own Machine Vision

2. Keep your target object on the camera. Then, click menu Action | Set

signature 1 on the PixyMon application.

— =} v “’
- "
File Action

P B Run/Stop
> Default program
& Raw video
" Cooked video
Run pan/tilit demo
Set signature 1
Set signature 2
Set signature 3...
Set signature 4
Set signature 5

Set signature 6.

respt Set CC signature b
>furn - Set CC signature 7
lear signature
Clear all sighatures
Restore default parameter values

[110]

Chapter 3

3. This makes PixyMon freeze the image so you can set a region of your target
object using a mouse:

wm Pixyhion BEE

File Action Help

B2 v &

response: 0 (0x0)
> runprogArg 8 1
response: 0 (0x0)

4. After that, PixyMon saves the signature data. Then, the application will track
your object. Move your target object.

[111]

Building Your Own Machine Vision

Tracking an object with a Pan/Tilt module

If you have a Pan/Tilt module already attached to Pixy CMUcamb, you can play a
demo to track the object through Pan/Tilt.

1. Using your registered signature, you can activate Pan/Tilt by clicking menu
Action | Run Pan/Tilt demo on the PixyMon application.

i) LICIEd

response: 0 (0x0)
> runprog 1
response: 0 (0x0)

2. Try to move your target object. The Pan/Tilt module will move to where the
target object is located.

[112]

Chapter 3

Running the Python application

Using the same registered signature, we can get a signature position. We can use a
sample program written in Python.

You can find get_blocks.py file in the folder <pixy codes>/build/libpixyusb
swig/. After that, you can add this file:

$ python get blocks.py

The program will acquire the position of the signature if it's found. You can see the
program output in the following screenshot:

® @ agusk — pi@raspberrypi: ~/pixy/pixy/build/libpixyusb_swig — ssh pi@192.168....

pi@raspberrypi:~/pixy/pixy/scripts $ 1s

build_hello_pixy.sh build_pantilt_c_demo.sh install_libpixyusb.sh
build_libpixyusb.sh build_pantilt_python_demo.sh pack_pixymon_src.sh
build_libpixyusb_swig.sh build_pixymon_src.sh
pi@raspberrypi:~/pixy/pixy/scripts $ cd ..

pi@raspberrypi:~/pixy/pixy $ cd build/

libpixyusb/ libpixyusb_swig/ pixymon/

pi@raspberrypi:~/pixy/pixy $ cd build/libpixyusb_swig/
pi@raspberrypi:~/pixy/pixy/build/libpixyusb_swig $ 1s

build get_blocks.py pixy.i pixy.py _pixy.so pixy_wrap.cxx setup.py src
pi@raspberrypi:~/pixy/pixy/build/libpixyusb_swig $ python get_blocks.py

Pixy Python SWIG Example -- Get Blocks

frame 0:
[BLOCK_TYPE=0 SIG=1 X=309 Y=198 WIDTH= 9 HEIGHT= 2]
frame 13
[BLOCK_TYPE=0 SIG=1 X=309 Y=198 WIDTH= 9 HEIGHT= 2]
frame 23
[BLOCK_TYPE=0 SIG=1 X=309 Y=198 WIDTH= 9 HEIGHT= 2]
frame 3:

[BLOCK_TYPE=0 SIG=1 X=309 Y=198 WIDTH= 9 HEIGHT= 2]

What's next?

You can modify the program to control Pixy CMUcamb module with the Raspberry
Pi board.

Clearing all signatures

If you have finished all experiments and don't want to use signature data again,
you can clear them by clicking menu Action | Clear all signatures on PixyMon
application.

[113]

Building Your Own Machine Vision

Summary

We have learned some basic machine vision using OpenCV. We also explored
Python to access OpenCV and then practiced with them.

As the last topic, we deployed machine vision on a Raspberry Pi board to build face
detection and track an object.

In the next chapter, we will learn how to build an autonomous car using machine
learning.

References

The following is a list of recommended books where you can learn more about the
topics in this chapter.

1. Richard Szeliski. Computer Vision: Algorithms and Applications,
Springer. 2011.

2. P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple
features, Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on,

2001, pp. I-511-1-518 vol. 1.

3. OpenCV library, http://opencv.org.

[114]

