Equivariant geometry of Alexandrov 3-spaces

Jesús Núñez-Zimbrón
UCSB
Plan:

1. Alexandrov spaces.
2. Group actions on them ↪.
3. Circle actions on Alexandrov 3-spaces.
4. Applications.
Alexandrov spaces

The model space M^2_k with constant curvature $k \in \mathbb{R}$ is:

(a) (\mathbb{R}^2, g_0), if $k = 0$.
(b) $(\mathbb{S}^2(1/\sqrt{k}), g_0)$, if $k > 0$.
(c) $(\mathbb{H}^2(1/\sqrt{-k}), g_0)$ if $k < 0$.

$$\text{diam}(M^2_k) = \begin{cases} \pi/\sqrt{k} & \text{si } k > 0; \\ \infty & \text{si } k \leq 0. \end{cases}$$
Alexandrov spaces

The model space M^2_k with constant curvature $k \in \mathbb{R}$ is:

(a) (\mathbb{R}^2, g_0), if $k = 0$.
(b) $(S^2(1/\sqrt{k}), g_0)$, if $k > 0$.
(c) $(H^2(1/\sqrt{-k}), g_0)$ if $k < 0$.

$$\text{diam}(M^2_k) = \begin{cases} \pi/\sqrt{k} & \text{si } k > 0; \\ \infty & \text{si } k \leq 0. \end{cases}$$

Alexandrov spaces (X, d) are **length spaces**, i.e. metric spaces such that

$$\text{dist}(p, q) = \inf_{\gamma \in \Omega_{pq}} \text{Length}(\gamma)$$

$$\text{Length}(\gamma) = \sup \sum_{i=1}^{n} \text{dist}(\gamma(t_i), \gamma(t_{i+1}))$$
Alexandrov spaces

The model space M^2_k with constant curvature $k \in \mathbb{R}$ is:

(a) (\mathbb{R}^2, g_0), if $k = 0$.

(b) $(\mathbb{S}^2(1/\sqrt{k}), g_0)$, if $k > 0$.

(c) $(\mathbb{H}^2(1/\sqrt{-k}), g_0)$ if $k < 0$.

\[
diam(M^2_k) = \begin{cases}
\pi/\sqrt{k} & \text{si } k > 0; \\
\infty & \text{si } k \leq 0.
\end{cases}
\]

Alexandrov spaces (X, d) are length spaces, i.e. metric spaces such that

\[
dist(p, q) = \inf_{\gamma \in \Omega_{pq}} \text{Length}(\gamma)
\]

\[
\text{Length}(\gamma) = \sup \sum_{i=1}^{n} \text{dist}(\gamma(t_i), \gamma(t_{i+1}))
\]

They are defined by comparing geodesic triangles to those of the model space:

\[\triangle pqr: \text{ geodesic triangle in } X\]

\[k \in \mathbb{R}\]

\[\overline{\triangle pqr}: \text{ comparison triangle } = \text{ triangle in } M^2_k \text{ whose sides have the same lengths as the corresponding sides of } \triangle pqr.\]
Alexandrov spaces

The model space M^2_k with constant curvature $k \in \mathbb{R}$ is:

(a) (\mathbb{R}^2, g_0), if $k = 0$.
(b) $(\mathbb{S}^2(1/\sqrt{k}), g_0)$, if $k > 0$.
(c) $(\mathbb{H}^2(1/\sqrt{-k}), g_0)$ if $k < 0$.

$$\text{diam}(M^2_k) = \begin{cases} \frac{\pi}{\sqrt{k}} & \text{si } k > 0; \\ \infty & \text{si } k \leq 0. \end{cases}$$

Alexandrov spaces (X, d) are length spaces, i.e. metric spaces such that

$$\text{dist}(p, q) = \inf_{\gamma \in \Omega_{pq}} \text{Length}(\gamma)$$

$$\text{Length}(\gamma) = \sup \sum_{i=1}^{n} \text{dist}(\gamma(t_i), \gamma(t_{i+1}))$$

They are defined by comparing geodesic triangles to those of the model space:

$\triangle pqr$: geodesic triangle in X

$k \in \mathbb{R}$

$\triangle \overline{pqr}$: comparison triangle = triangle in M^2_k whose sides have the same lengths as the corresponding sides of $\triangle pqr$.

$\triangle \overline{pqr}$ exists and is unique if $k \leq 0$ or $k > 0$ and

$$d(p, q) + d(p, r) + d(q, r) < \frac{2\pi}{\sqrt{k}}.$$
Definition (T-property) Given $\triangle pqr$ in X and a comparison triangle $\triangle pqr$, for any $s \in [qr]$ and the corresponding point $\bar{s} \in [\bar{q}\bar{r}]$

\[\text{dist} (p, s) \geq \text{dist} (\bar{p}, \bar{s}). \]
Definition (T-property) Given $\triangle pqr$ in X and a comparison triangle $\triangle \overline{pqr}$, for any $s \in [qr]$ and the corresponding point $\overline{s} \in [\overline{qr}]$

$$\text{dist}(p, s) \geq \text{dist}(\overline{p}, \overline{s}).$$

A length space has curv $X \geq k$ if each $x \in X$ has a neighborhood U in which the T-property holds for every $\triangle pqr \subset U$.
Alexandrov spaces (cont’d)

Definition (T-property) Given $\triangle pqr$ in X and a comparison triangle $\triangle \overline{pqr}$, for any $s \in [qr]$ and the corresponding point $\overline{s} \in [\overline{qr}]$

$$\text{dist}(p, s) \geq \text{dist}(\overline{p}, \overline{s}).$$

A length space has $\text{curv} X \geq k$ if each $x \in X$ has a neighborhood U in which the T-property holds for every $\triangle pqr \subset U$.

Definition An **Alexandrov space** is a complete, locally compact length space with $\text{curv} \geq k$ for some $k \in \mathbb{R}$.
Examples & constructions

(i) Riemannian manifolds with $\sec \geq k$.

(ii) Euclidean cones
$$K(Y) := Y \times [0, \infty) / Y \times \{0\}$$
$$d((p, t), (q, s)) := \sqrt{t^2 + s^2 + 2ts \cos d_Y(p, q)}$$
$$\text{curv}_Y \geq 1 \Rightarrow \text{curv}_K(Y) \geq 0.$$

(iii) Suspensions
$$\text{Susp}(Y) = Y \times [0, \pi] / Y \times \{0\}, Y \times \{\pi\},$$
$$\cos d((p, t), (q, s)) := \cos t \cos s + \sin t \sin s \cos d_Y(p, q).$$
$$\text{curv}_Y \geq 1 \Rightarrow \text{curv}_{\text{Susp}(Y)} \geq 1.$$

(iv) Quotients of isometric actions.
$$G \text{ compact Lie group} \curvearrowright \text{by isometries} \text{on a Riemannian manifold } M \text{ with } \sec \geq k.$$
$$\text{curv}_M / G \geq k.$$
Examples & constructions

(i) Riemannian manifolds with $\sec \geq k$.

(ii) Euclidean cones

$$K(Y) := Y \times [0, \infty)/Y \times \{0\}$$

$$d((p, t), (q, s)) := \sqrt{t^2 + s^2 + 2ts \cos d_Y(p, q)}$$

$$\text{curv } Y \geq 1 \implies \text{curv } K(Y) \geq 0.$$
Examples & constructions

(i) Riemannian manifolds with $\sec \geq k$.

(ii) Euclidean cones

$K(Y) := Y \times [0, \infty)/Y \times \{0\}$

$$d((p, t), (q, s)) := \sqrt{t^2 + s^2 + 2ts \cos d_Y(p, q)}$$

$\text{curv} \ Y \geq 1 \implies \text{curv} \ K(Y) \geq 0.$

(iii) Suspensions

$\text{Susp}(Y) = Y \times [0, \pi]/Y \times \{0\}, Y \times \{\pi\}$

$\text{curv} \ Y \geq 1 \implies \text{curv} \text{Susp}(Y) \geq 1$

(iv) Quotients of isometric actions.

G compact Lie group \rtimes by isometries on a Riemannian manifold M with $\sec \geq k$. Then $\text{curv} \ M/G \geq k$.
Examples & constructions

(i) Riemannian manifolds with $\sec \geq k$.

(ii) Euclidean cones

$$K(Y) := \frac{Y \times [0, \infty)}{Y \times \{0\}}$$

$$d((p, t), (q, s)) := \sqrt{t^2 + s^2 + 2ts \cos d_Y(p, q)}$$

$$\text{curv } Y \geq 1 \iff \text{curv } K(Y) \geq 0.$$

(iii) Suspensions

$$\text{Susp}(Y) = \frac{Y \times [0, \pi]}{Y \times \{0\}, Y \times \{\pi\}}$$

$$\cos d((p, t), (q, s)) := \cos t \cos s + \sin t \sin s \cos d_Y(p, q).$$

$$\text{curv } Y \geq 1 \implies \text{curv } \text{Susp}(Y) \geq 1$$

(iv) Quotients of isometric actions.

G compact Lie group \curvearrowright by isometries on a Riemannian manifold M with $\sec \geq k$. Then $\text{curv } M/G \geq k$.

Jesús Núñez-Zimbrón (UCSB)

Equivariant geometry of Alexandrov 3-spaces

October 14, 2016 5 / 31
(v) Gromov-Hausdorff limits.
\[\text{curv } X_i \geq k \text{ and } X_i \to_{\text{GH}} Y \text{ then curv } Y \geq k. \]

(iii) Suspensions
\[\text{Susp}(Y) = Y \times [0, \pi]/Y \times \{0\}, Y \times \{\pi\} \]
\[\cos d(\((p, t), (q, s))) := \cos t \cos s + \sin t \sin s \cos d_Y(p, q). \]
\[\text{curv } Y \geq 1 \implies \text{curv Susp}(Y) \geq 1 \]

(iv) Quotients of isometric actions.
\[G \text{ compact Lie group } \rtimes \text{ by isometries on a Riemannian manifold } M \text{ with } \text{sec} \geq k. \text{ Then curv } M/G \geq k. \]
(v) Gromov-Hausdorff limits.
\[\text{curv} X_i \geq k \text{ and } X_i \to_{GH} Y \text{ then } \text{curv} Y \geq k. \]

(vi) Gluings:
If \(X, Y \) are Alexandrov spaces with \(\text{curv} \geq k \) and we have an isometry \(\partial X \to \partial Y \) then \(X \cup_{\partial} Y \) is an Alexandrov space of \(\text{curv} \geq k \).

(iii) Suspensions
\[
\text{Susp}(Y) = Y \times [0, \pi]/ Y \times \{0\}, Y \times \{\pi\}
\]
\[
\cos d((p, t), (q, s)) := \cos t \cos s + \sin t \sin s \cos d_Y(p, q).
\]
\[
\text{curv} Y \geq 1 \implies \text{curv} \text{Susp}(Y) \geq 1
\]

(iv) Quotients of isometric actions.
\(G \) compact Lie group \(\curvearrowright \) by isometries on a Riemannian manifold \(M \) with \(\text{sec} \geq k \). Then \(\text{curv} M/G \geq k \).
Properties

(i) Geodesics do not branch.

\[
\begin{array}{c}
\text{Diagram of geodesics not branching.}
\end{array}
\]
(i) Geodesics do not branch.

Not an Alexandrov space:
Properties

(i) Geodesics do not branch.

(ii) Toponogov Theorem: T-property is satisfied globally.

Not an Alexandrov space:
Properties

(i) Geodesics do not branch.

(ii) Toponogov Theorem: T-property is satisfied globally.

(iii) Hausdorff dimension of X ($\dim X$) is a non-negative integer or ∞.

Not an Alexandrov space:
(i) Geodesics do not branch.

(ii) \textbf{Toponogov Theorem}: T-property is satisfied globally.

(iii) Hausdorff dimension of X ($\dim X$) is a non-negative integer or ∞.

(iv) Angles between geodesics at the same point are well defined.
\[\alpha(t_1) \quad \alpha(t) \]

\[\beta(s_i) \quad \beta(s_1) \quad \beta(s) \]

\[\alpha(t) \quad \alpha(t_1) \quad \alpha(t_i) \]

\[\beta(s_i) \quad \beta(s_1) \quad \beta(s) \]

\[p \rightarrow \]
(i) Geodesics do not branch.

Not an Alexandrov space:

(ii) Toponogov Theorem: T-property is satisfied globally.

(iii) Hausdorff dimension of X ($\dim X$) is a non-negative integer or ∞.

(iv) Angles between geodesics at the same point are well defined:

$$\angle(\alpha, \beta) = \lim_{t_i, s_i \to 0} \{\angle \alpha(t_i)p\beta(s_i)\}.$$
(i) Geodesics do not branch.

(ii) Toponogov Theorem: T-property is satisfied globally.

(iii) Hausdorff dimension of X ($\dim X$) is a non-negative integer or ∞.

(iv) Angles between geodesics at the same point are well defined:

$$\angle(\alpha, \beta) = \lim_{t_i, s_i \to 0} \{\overline{\angle \alpha(t_i)p\beta(s_i)}\}.$$

Tangent direction at p: geodesics/angle zero

(S_p, \angle) possibly noncomplete metric space.

(Σ_p, \angle) metric completion is called the space of directions of X at p.

Not an Alexandrov space:
Properties (cont’d)

(v) Thm. (Burago, Gromov, Perelman)
1. Σ_p is an Alexandrov space with $\text{curv} \geq 1$
2. $\dim \Sigma_p = \dim X - 1$
3. Σ_p is homeomorphic to \mathbb{S}^{n-1} on a dense set. (topologically regular points)
(v) Thm. (Burago, Gromov, Perelman)
1. Σ_p is an Alexandrov space with $\text{curv} \geq 1$
2. $\dim \Sigma_p = \dim X - 1$
3. Σ_p is homeomorphic to \mathbb{S}^{n-1} on a dense set. (topologically regular points)

(vi) Thm. (Conical neighborhood (Perelman))
Every $p \in X$ has a neighborhood pointed-homeomorphic to the cone over Σ_p.

(vii) Boundary of an Alexandrov space:
1. If $\dim X = 1$, ∂X is the topological boundary.
2. For $\dim X = n > 1$, $p \in \partial X$ if and only if $\partial \Sigma_p \neq \emptyset$.
∂X is a closed subset of codim. 1.
$\partial X \subseteq \mathbb{S}(X)$. If $\partial X = \emptyset$, then $\text{codim} \mathbb{S}(X) \geq 3$. And so:
· $\dim X = 1, 2 \Rightarrow X$ is homeomorphic to a topological manifold.
(v) Thm. (Burago, Gromov, Perelman)
1. Σ_p is an Alexandrov space with $\text{curv} \geq 1$
2. $\dim \Sigma_p = \dim X - 1$
3. Σ_p is homeomorphic to \mathbb{S}^{n-1} on a dense set. (topologically regular points)

(vi) Thm. (Conical neighborhood (Perelman))
Every $p \in X$ has a neighborhood pointed-homeomorphic to the cone over Σ_p.

(vii) Boundary of an Alexandrov space:
1. If $\dim X = 1$, ∂X is the topological boundary.
2. For $\dim X = n > 1$, $p \in \partial X$ if and only if $\partial \Sigma_p \neq \emptyset$.
∂X is a closed subset of codim. 1.

$\partial X \subset S(X)$. If $\partial X = \emptyset$, then $\text{codim} S(X) \geq 3$. And so:
- $\dim X = 1, 2 \implies X$ is homeomorphic to a topological manifold.
If X is closed and $\dim X = 3$, then $\dim \Sigma_p = 2$.

Bonnet-Myers Thm $\implies \pi_1 \Sigma_p$ is finite
$\implies \Sigma_p \cong S^2$ or $\Sigma_p \cong \mathbb{R}P^2$.
If X is closed and $\dim X = 3$, then $\dim \Sigma_p = 2$.

Bonnet-Myers Thm $\implies \pi_1 \Sigma_p$ is finite
$\implies \Sigma_p \cong \mathbb{S}^2$ or $\Sigma_p \cong \mathbb{R}P^2$.

Conical Nhgb Thm & codim. of $S(X)$
\implies Finite number of points with $\Sigma_p \cong \mathbb{R}P^2$.
$\implies X \cong M^3 \cup_{i=1}^{2s} K(\mathbb{R}P^2)$.

Other description: Grove-Wilking, Harvey-Searle: non-manifold X^3, then there exist:
- Alexandrov manifold \tilde{X}^3 (orientable branched double cover)
- Orientation-reversing isometric involution $\iota: \tilde{X} \to \tilde{X}$ with only fixed points such that X is isometric to \tilde{X}/ι.

Ramification locus \to topologically singular points.
If X is closed and $\dim X = 3$, then $\dim \Sigma_p = 2$.

Bonnet-Myers Thm $\Rightarrow \pi_1 \Sigma_p$ is finite $\Rightarrow \Sigma_p \cong \mathbb{S}^2$ or $\Sigma_p \cong \mathbb{R}P^2$.

Conical Nhgb Thm & codim. of $S(X)$ \Rightarrow Finite number of points with $\Sigma_p \cong \mathbb{R}P^2$.

$\Rightarrow X \cong M^3 \cup_{i=1}^{2s} K(\mathbb{R}P^2)$.

Other description Grove-Wilking, Harvey-Searle:
non-manifold X^3, then there exist:
- Alexandrov manifold \tilde{X}^3
 (orientable branched double cover)
- Orientation-reversing isometric involution $\nu: \tilde{X} \to \tilde{X}$ with only fixed points

such that X is isometric to \tilde{X}/ν.
Ramification locus \to topologically singular points
Thm. (Fukaya, Yamaguchi)
\(\text{Isom}(X)\) is a Lie group.
\(X\) compact \(\implies \text{Iso}(X)\) is compact.

Measures of the size of \(\text{Iso}(X)\):
- Symmetry degree: \(\dim \text{Iso}(X)\)
- Symmetry rank: \(\text{rankIso}(X)\)
- Cohomogeneity: \(\dim X/G\) where \(G \leq \text{Iso}(X)\).

Cohomogeneity 0: Thm. (Berestovskii)
A homogeneous Alexandrov space is isometric to a Riemannian manifold.

Cohomogeneity 1: Here, \(X/G\) must be either a circle or an interval.
Thm. (Galaz-García, Searle)
- If X/G is a circle then M is equivariantly homeomorphic to a fiber bundle over \mathbb{S}^1 with fiber G/H and structure group $N(H)/H$. In particular X is a manifold.
- If $X/G \cong [-1, 1]$, then there is a group diagram

Cohomogeneity 1: Here, X/G must be either a circle or an interval.
Group actions on Alexandrov spaces (cont’d)

Thm. (Galaz-García, Searle)
- If X/G is a circle then M is equivariantly homeomorphic to a fiber bundle over \mathbb{S}^1 with fiber G/H and structure group $N(H)/H$. In particular X is a manifold.
- If $X/G \cong [-1, 1]$, then there is a group diagram

\[
\begin{array}{ccc}
G & & \\
\downarrow j_- & & \uparrow j_+ \\
L_- & & L_+ \\
\downarrow i_- & & \uparrow i_+ \\
H & & \\
\end{array}
\]

- L_\pm istropies at ± 1, H principal isotropy, L_\pm/H are isometric to a homogeneous space with $\sec > 0$.
- X is the union of two fiber bundles with base G/L_\pm and fiber $K(L_\pm/H)$.

Note: This allows them to classify topologically cohomogeneity one Alexandrov spaces up to dimension 4. The only non-manifold one in dim. 3 is $\text{Susp}(\mathbb{R}P^2)$.
We focus on the case X closed, $\dim X = 3$ and effective action, i.e. principal isotropy is e. Because of the dimensions $G = S^1$.

(i) The action leaves the topologically regular and topologically singular sets invariant.

(ii) The possible isotropies are the closed subgroups of S^1: e, \mathbb{Z}_k and S^1 itself.

(iii) The manifold case was done by Orlik, Raymond: M/G is a 2-manifold carrying a set of topological/equivariant invariants.
We focus on the case X closed, $\dim X = 3$ and effective action, i.e. principal isotropy is e. Because of the dimensions $G = S^1$.

(i) The action leaves the topologically regular and topologically singular sets invariant.
Cohomogeneity 2 Alexandrov spaces

We focus on the case X closed, $\dim X = 3$ and effective action, i.e. principal isotropy is e. Because of the dimensions $G = S^1$.

(i) The action leaves the topologically regular and topologically singular sets invariant.

(ii) The possible isotropies are the closed subgroups of S^1: e, \mathbb{Z}_k and S^1 itself.
We focus on the case X closed, $\dim X = 3$ and effective action, i.e. principal isotropy is e. Because of the dimensions $G = S^1$.

(i) The action leaves the topologically regular and topologically singular sets invariant.

(ii) The possible isotropies are the closed subgroups of S^1: e, \mathbb{Z}_k and S^1 itself.

(iii) The manifold case was done by Orlik, Raymond: M/G is a 2-manifold carrying a set of topological/equivariant invariants.
Circle actions on 3-manifolds

Analysis of nghbs of the orbits and associate invariants:

\[b \in \mathbb{H}_2(O^*, \mathbb{Z}) \]

\(O \) is the principal stratum. Open and dense by the Principal orbit Thm. (Alexandrov version by: Galaz-García, Guijarro).

\(g \) is the genus of \(M^* \).

\(\varepsilon \in \{ o, n \} \) depending of orientabilities.

\(f \) is the number of boundary cpts. of fixed points.

\(t \) is the number of boundary cpts. of isotropy \(\mathbb{Z}_2(\alpha_i, \beta_i) \) are the Seifert invariants of orbits with isotropy \(\mathbb{Z}_k \).
Circle actions on 3-manifolds

Analysis of nghbs of the orbits and associate invariants:

- \(b \in H^2(O^*, \mathbb{Z}) \)

\(O \) is the principal stratum. Open and dense by the Principal orbit Thm. (Alexandrov version by: Galaz-García, Guijarro).
Circle actions on 3-manifolds

Analysis of nghbs of the orbits and associate invariants:

- \(b \in H^2(O^*, \mathbb{Z}) \)

 \(O \) is the principal stratum. Open and dense by the Principal orbit Thm. (Alexandrov version by: Galaz-García, Guijarro).

- \(g \) is the genus of \(M^* \)
Circle actions on 3-manifolds

Analysis of nghbs of the orbits and associate invariants:

- \(b \in H^2(O^*, \mathbb{Z}) \)

 \(O \) is the principal stratum. Open and dense by the Principal orbit Thm. (Alexandrov version by: Galaz-García, Guijarro).

- \(g \) is the genus of \(M^* \)

- \(\varepsilon \in \{o, n\} \) depending of orientabilities.
Circle actions on 3-manifolds

Analysis of nghbs of the orbits and associate invariants:

- $b \in H^2(O^*, \mathbb{Z})$
 - O is the principal stratum. Open and dense by the Principal orbit Thm. (Alexandrov version by: Galaz-García, Guijarro).

- g is the genus of M^*
- $\varepsilon \in \{o, n\}$ depending of orientabilities.
- f is the number of boundary cpts. of fixed points.
Circle actions on 3-manifolds

Analysis of nghbs of the orbits and associate invariants:

- $b \in H^2(O^*, \mathbb{Z})$
 - O is the principal stratum. Open and dense by the Principal orbit Thm. (Alexandrov version by: Galaz-García, Guijarro).

- g is the genus of M^*

- $\varepsilon \in \{o, n\}$ depending of orientabilities.

- f is the number of boundary cpts. of fixed points.

- t is the number of boundary cpts. of isotropy \mathbb{Z}_2
Circle actions on 3-manifolds

Analysis of nghbs of the orbits and associate invariants:

- \(b \in H^2(O^*, \mathbb{Z}) \)
 - \(O \) is the principal stratum. Open and dense by the Principal orbit Thm. (Alexandrov version by: Galaz-García, Guijarro).

- \(g \) is the genus of \(M^* \)

- \(\varepsilon \in \{ o, n \} \) depending of orientabilities.

- \(f \) is the number of boundary cpts. of fixed points.

- \(t \) is the number of boundary cpts. of isotropy \(\mathbb{Z}_2 \)

- \((\alpha_i, \beta_i)\) are the Seifert invariants of orbits with isotropy \(\mathbb{Z}_k \).
Cohomogeneity 2 Alexandrov spaces

Thm. (Orlik, Raymond)

- A circle action on a closed M^3 is uniquely determined up to equivariant homeomorphism by the set of invariants
 $$\{ b; (\varepsilon, g, f, t); \{(\alpha_i, \beta_i)\}_{i=1}^n \}$$

- If $f > 0$ then M^3 is equivariantly homeomorphic to
 $$M_{(\varepsilon, g, f, t)} \# L(\alpha_1, \beta_1) \# \ldots \# L(\alpha_m, \beta_m),$$
 where $M_{(\varepsilon, g, f, t)}$ is
 $$N \# (\#_{i=1}^l \mathbb{S}^2 \times \mathbb{S}^1) \# (\#_{i=1}^t \mathbb{R}P^2 \times \mathbb{S}^1)$$
 and
 $$N \cong \mathbb{S}^3 \quad \text{or} \quad \mathbb{S}^2 \tilde{\times} \mathbb{S}^1.$$
Cohomogeneity 2 Alexandrov spaces

Thm. (Orlik, Raymond)
- A circle action on a closed M^3 is uniquely determined up to equivariant homeomorphism by the set of invariants
 $$\{b; (\varepsilon, g, f, t); \{ (\alpha_i, \beta_i) \}_{i=1}^n \}$$
- If $f > 0$ then M^3 is equivariantly homeomorphic to
 $$M_{(\varepsilon, g, f, t)} \# L(\alpha_1, \beta_1) \# \cdots \# L(\alpha_m, \beta_m),$$
 where $M_{(\varepsilon, g, f, t)}$ is
 $$N \# \left(\#_{i=1}^l S^2 \times S^1\right) \# \left(\#_{i=1}^t \mathbb{R}P^2 \times S^1\right)$$
 and
 $$N \cong S^3 \text{ or } S^2 \tilde{\times} S^1.$$

Thm. (–, 2014)
- A circle action on a closed Alexandrov space X^3 is uniquely determined by the set of invariants
 $$\{b; (\varepsilon, g, f, t); \{ (\alpha_i, \beta_i) \}; (r_1, \ldots, r_s) \}$$
 $$r_i$$ even non-negative integers.
- X is equivariantly homeomorphic to
 $$M \# \left(\#_{i=1}^s \text{Susp}(\mathbb{R}P^2)\right)$$
 where $M = \{b; (\varepsilon, g, f + s, t); \{ (\alpha_i, \beta_i) \}_{i=1}^n \}$.
Sketch of proof.

The analysis of the action at topologically regular points is that of Orlik-Raymond. We need to see what happens at topologically singular points.

(i) Top. singular points are fixed points.
The analysis of the action at topologically regular points is that of Orlik-Raymond. We need to see what happens at topologically singular points.

(i) top. singular points are fixed points.

Thm. Slice Theorem (Harvey-Searle)

Let a compact Lie group G act by isometries on an Alexandrov space X, then a small nghbd. of the orbit G/G_p is equivariantly homeomorphic to $G \times_{G_p} K(S_p^\perp)$. ($S_p^\perp$ is the subset of Σ_p orthogonal to the orbit).
Sketch of proof.

The analysis of the action at topologically regular points is that of Orlik-Raymond. We need to see what happens at topologically singular points.

(i) top. singular points are fixed points.

(ii) Slice Thm \implies action commutes with cone construction at p and $\implies K(\mathbb{R}P^2)/S^1 \cong K(\mathbb{R}P^2/S^1)$.

(iii) Only one S^1 action on $\mathbb{R}P^2$; the one induced by rotations on S^2.

p

$\mathbb{R}P^2$
Sketch of proof.

The analysis of the action at topologically regular points is that of Orlik-Raymond. We need to see what happens at topologically singular points.

(i) top. singular points are fixed points.

(ii) Slice Thm \implies action commutes with cone construction at p and $\implies K(\mathbb{R}P^2)/S^1 \cong K(\mathbb{R}P^2/S^1)$.

(iii) Only one S^1 action on $\mathbb{R}P^2$; the one induced by rotations on S^2.
Sketch of proof.

The analysis of the action at topologically regular points is that of Orlik-Raymond. We need to see what happens at topologically singular points.

(i) Top. singular points are fixed points.

(ii) Slice Thm \implies action commutes with cone construction at p and $\implies K(\mathbb{R}P^2)/S^1 \cong K(\mathbb{R}P^2/S^1)$.

(iii) Only one S^1 action on $\mathbb{R}P^2$; the one induced by rotations on S^2.
Sketch of proof (cont’d)

Orbit space in the Alexandrov case:

- **New invariants**: \((r_1, \ldots, r_s) \): Number of top. sing. points on each boundary component.
(iv) For each action we can “read off” the invariants.

(v) Now, given a set of invariants we want an Alexandrov space with an S^1-action with those invariants and prove that two Alexandrov spaces with the same invariants are equivariantly homeomorphic.

(vi) First we think about the case X/G is homeomorphic to a 2-disk and no isolated \mathbb{Z}_k orbits.
(vii) We can construct a cross-section $X/S^1 \to X$ to $\pi : X \to X/S^1$:

- $P \to P^*$ is a trivial principal S^1-bundle.
- Extend the cross-section to U^*_{RF} and U^*_{SE} “radially”.
- Extend to the conical neighborhoods by “copying the base”.

$\pi : X \to X/S^1$
(viii) With this, if there are two Alexandrov spaces X, Y whose orbit space is a 2-disk and with same invariants we can give an equivariant homeomorphism via the sections:

$$X - \cdots - \varphi \rightarrow Y$$

$$\pi_1 \rightarrow X/S^1 \cong Y/S^1 \rightarrow \pi_2$$

It follows by induction that this is true for any number of top. singular points.
(ix) This shows that \(\text{Susp}(\mathbb{R}P^2)\# \ldots \# \text{Susp}(\mathbb{R}P^2)\) is the only Alexandrov 3-space with such an orbit space.
(ix) This shows that $\text{Susp}(\mathbb{R}P^2) \# \ldots \# \text{Susp}(\mathbb{R}P^2)$ is the only Alexandrov 3-space with such an orbit space.

\[M = \{ b; (\varepsilon, g, f + s, t); \{(\alpha_i, \beta_i)\}_{i=1}^n \} \]\nhas at least s circles of fixed points so we can take equivariant connected sums with $\text{Susp}(\mathbb{R}P^2) \# \ldots \# \text{Susp}(\mathbb{R}P^2)$.

\[\text{(x) The manifold} \]

\[\text{Sketch of proof (cont’d)} \]
The decomposition in equivariant connected sums makes it plausible to compute topological invariants and obtain the following application:

- Recall that X is aspherical if $\pi_q(X) = 0$, $q > 1$.

Borel conjecture: If two closed aspherical manifolds are homotopy equivalent then they are homeomorphic. (False in the smooth category because of exotic manifolds, but true for $n \leq 3$ at least).
The decomposition in equivariant connected sums makes it plausible to compute topological invariants and obtain the following application:

- Recall that X is **aspherical** if $\pi_q(X) = 0$, $q > 1$.
- **Borel conjecture**: If two closed aspherical manifolds are homotopy equivalent then they are homeomorphic. (false in the smooth category because of exotic manifolds, but true for $n \leq 3$ at least).
The decomposition in equivariant connected sums makes it plausible to compute topological invariants and obtain the following application:

- Recall that X is **aspherical** if $\pi_q(X) = 0$, $q > 1$.

- **Borel conjecture**: If two closed aspherical manifolds are homotopy equivalent then they are homeomorphic. (false in the smooth category because of exotic manifolds, but true for $n \leq 3$ at least).

$$\pi_2(\#_{i=1}^s \text{Susp}(\mathbb{R}P^2)) \cong \bigoplus_{i=1}^s \mathbb{Z}_2.$$
Application

The decomposition in equivariant connected sums makes it plausible to compute topological invariants and obtain the following application:

- Recall that X is **aspherical** if $\pi_q(X) = 0$, $q > 1$.
- **Borel conjecture:** If two closed aspherical manifolds are homotopy equivalent then they are homeomorphic. (false in the smooth category because of exotic manifolds, but true for $n \leq 3$ at least).

\[\pi_2(\#_{i=1}^s \text{Susp}(\mathbb{R}P^2)) \cong \bigoplus_{i=1}^s \mathbb{Z}_2. \]

Mayer-Vietoris \Rightarrow

\[H_2(M \# (\#_{i=1}^s \text{Susp}(\mathbb{R}P^2))) \cong H_2(M) \oplus H_2(\#_{i=1}^s \text{Susp}(\mathbb{R}P^2)) \]
The decomposition in equivariant connected sums makes it plausible to compute topological invariants and obtain the following application:

- Recall that X is **aspherical** if $\pi_q(X) = 0$, $q > 1$.
- **Borel conjecture**: If two closed aspherical manifolds are homotopy equivalent then they are homeomorphic. (false in the smooth category because of exotic manifolds, but true for $n \leq 3$ at least).

- $\pi_2(\bigoplus_{i=1}^s \text{Susp}(\mathbb{R}P^2)) \cong \bigoplus_{i=1}^s \mathbb{Z}_2$.
- **Mayer-Vietoris** ⇒

 $H_2(M \# (\bigoplus_{i=1}^s \text{Susp}(\mathbb{R}P^2))) \cong H_2(M) \oplus H_2(\bigoplus_{i=1}^s \text{Susp}(\mathbb{R}P^2))$

- Then

 $H_2(M \# (\bigoplus_{i=1}^s \text{Susp}(\mathbb{R}P^2))) \cong 0$ can only happen if there are no $\text{Susp}(\mathbb{R}P^2)$ summands.
Application

The decomposition in equivariant connected sums makes it plausible to compute topological invariants and obtain the following application:

- Recall that X is **aspherical** if $\pi_q(X) = 0$, $q > 1$.

- **Borel conjecture**: If two closed aspherical manifolds are homotopy equivalent then they are homeomorphic. (false in the smooth category because of exotic manifolds, but true for $n \leq 3$ at least).

- $\pi_2(\#_{i=1}^s \text{Susp}(\mathbb{R}P^2)) \cong \bigoplus_{i=1}^s \mathbb{Z}_2$.

- Mayer-Vietoris \Rightarrow

 $H_2(M \# (\#_{i=1}^s \text{Susp}(\mathbb{R}P^2))) \cong H_2(M) \oplus H_2(\#_{i=1}^s \text{Susp}(\mathbb{R}P^2))$

 Then

 $H_2(M \# (\#_{i=1}^s \text{Susp}(\mathbb{R}P^2))) \cong 0$

 can only happen if there are no $\text{Susp}(\mathbb{R}P^2)$ summands.

- Therefore, the only aspherical Alexandrov spaces with an isometric S^1 action are 3-manifolds, and the Borel conjecture is true there.
An isometric local circle action is a decomposition of X into disjoint curves (possibly points) such that each curve has a nhgb. with an isometric circle action whose fibers are the curves of the decomposition.

Classified in the manifold case by Fintushel, Orlik-Raymond. In the Alexandrov case we obtained

$$X \text{ is equivariantly homeomorphic to } M \# \text{Susp}(\mathbb{R}P^2)\# \cdots \# \text{Susp}(\mathbb{R}P^2),$$

where M is the closed 3-manifold determined by the set of invariants

$$(b; \varepsilon, g, (f, k_1), (t, k_2); \{(\alpha_i, \beta_i)\}_{i=1}^n)$$

in the manifold case.

Thm (Galaz-García, –, 2016)

- An isometric local circle action on X is determined up to equivariant homeomorphism by

$$(b; \varepsilon, g, (f, k_1), (t, k_2); \{(\alpha_i, \beta_i)\}; (r_1, r_2, \ldots, r_s)).$$
Mitsuishi-Yamaguchi considered collapsing sequences of closed Alexandrov 3-spaces, i.e.

$$X_i \to_{GH} Y$$

with $\text{diam}(X_i) \leq D$, $\text{curv} X_i \geq -1$ and $\text{dim} Y < 3$.

When $\text{dim} Y = 2$ and $\partial Y = \emptyset$, they obtained that X_i is a kind of generalized Seifert fiber space admitting singular interval fibers at some topologically singular points.

Thm (Galaz-García, –, 2016) If the sequence does not have singular interval fibers, the collapse occurs along the fibers of an isometric local circle action on the X_i for i big enough.
An Alexandrov 3-space is **geometric** if it is a quotient of the corresponding Thurston geometry by some cocompact lattice.

We will say a closed Alexandrov 3-space is **irreducible** if every embedded sphere bounds a 3-ball and if the space has topologically singular points we further require that every $\mathbb{R}P^2$ bounds a $K(\mathbb{R}P^2)$.

Theorem (Galaz-García, Guijarro –, 2016)

For any $D > 0$ there exists $\varepsilon(D) > 0$ such that if X is a closed irreducible Alexandrov 3-space with diam D and $\text{vol} \ X < \varepsilon$ then X is geometric.

Sketch of part of the proof: Assume that this is not the case. Then for a sequence $\varepsilon_i \to 0$, there is a sequence X_i converging in GH to Y.

Case dim $Y = 2$, $\partial Y = \emptyset$. Then by Mitsuishi-Yamaguchi’s work, X_i is a generalized Seifert fiber space. If X_i does not have singular interval fibers, the collapse occurs along the fibers of a local action $= \Rightarrow$ decomposition into equivariant connected sums. $= \Rightarrow$ condition of irreducibility rules out everything but one connected summand, which then is geometric.
An Alexandrov 3-space is **geometric** if it is a quotient of the corresponding Thurston geometry by some cocompact lattice.

We will say a closed Alexandrov 3-space is **irreducible** if every embedded sphere bounds a 3-ball and if the space has topologically singular points we further require that every $\mathbb{R}P^2$ bounds a $K(\mathbb{R}P^2)$.

Thm. (Galaz-García, Guijarro, –, 2016)

For any $D > 0$ there exists $\varepsilon(D) > 0$ such that if X is a closed irreducible Alexandrov 3-space with diam D and $\text{vol}X < \varepsilon$ then X is geometric.
Local circle actions and Thurston geometries (cont’d)

An Alexandrov 3-space is **geometric** if it is a quotient of the corresponding Thurston geometry by some cocompact lattice.

We will say a closed Alexandrov 3-space is **irreducible** if every embedded sphere bounds a 3-ball and if the space has topologically singular points we further require that every $\mathbb{R}P^2$ bounds a $K(\mathbb{R}P^2)$.

Thm. (Galaz-García, Guijarro, –, 2016)
For any $D > 0$ there exists $\varepsilon(D) > 0$ such that if X is a closed irreducible Alexandrov 3-space with diam D and $\text{vol}X < \varepsilon$ then X is geometric.

Sketch of part of the proof: Assume that this is not the case. Then for a sequence $\varepsilon_i \to 0$, there is a sequence X_i covering in GH to Y. Case $\dim Y = 2$, $\partial Y = \emptyset$. Then by Mitsuishi-Yamaguchi’s work, X_i is a generalized Seifert fiber space. If X_i does not have singular interval fibers, the collapse occurs along the fibers of a local action \Rightarrow decomposition into equivariant connected sums. \Rightarrow condition of irreducibility rules out everything but one connected summand, which then is geometric.
An Alexandrov 3-space is **geometric** if it is a quotient of the corresponding Thurston geometry by some cocompact lattice.

We will say a closed Alexandrov 3-space is **irreducible** if every embedded sphere bounds a 3-ball and if the space has topologically singular points we further require that every $\mathbb{R}P^2$ bounds a $K(\mathbb{R}P^2)$.

Thm. (Galaz-García, Guijarro, –, 2016) For any $D > 0$ there exists $\varepsilon(D) > 0$ such that if X is a closed irreducible Alexandrov 3-space with $\text{diam} \ X = D$ and $\text{vol} \ X < \varepsilon$ then X is geometric.

sketch of part of the proof: Assume that this is not the case. Then for a sequence $\varepsilon_i \to 0$, there is a sequence X_i covering in GH to Y.

Case dim $Y = 2$, $\partial Y = \emptyset$. Then by Mitsuishi-Yamaguchi’s work, X_i is a generalized Seifert fiber space. If X_i does not have singular interval fibers, the collapse occurs along the fibers of a local action.

\implies decomposition into equivariant connected sums.

\implies condition of irreducibility rules out everything but one connected summand, which then is geometric.
If X_i does have singular fibers then we take its branched double cover. Then use that:
If X_i does have singular fibers then we take its branched double cover. Then use that:

Thm. (Galaz-García, –, 2016) An isometric local circle action on a non-manifold Alexandrov 3-space can be lifted to an isometric local circle action on its branched double cover.
If X_i does have singular fibers then we take its branched double cover. Then use that:

Thm. (Galaz-García, −, 2016) An isometric local circle action on a non-manifold Alexandrov 3-space can be lifted to an isometric local circle action on its branched double cover.

The branched double cover doesn’t have singular fibers. Although \tilde{X} might not be irreducible, it is possible to still see that we can rule out everything but one summand.
Thank you!