Barremian rift-related turbidites and alkaline volcanism in southern Mexico and their role in the opening of the Gulf of Mexico

Claudia C. Mendoza-Rosales a,⁎, Elena Centeno-García b, Gilberto Silva-Romo a, Emiliano Campos-Madrigal a, Juan Pablo Bernal c

a Departamento de Ingeniería Geológica, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., 04510, Mexico
b Departamento de Geología Regional, Instituto de Geología, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Ciudad Universitaria, México D.F., 04510, Mexico
c Departamento de Geoquímica, Instituto de Geología, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Ciudad Universitaria, México D.F., 04510, Mexico

⁎ Corresponding author.

Available online 15 May 2010

Article history:
Received 1 December 2009
Received in revised form 9 April 2010
Accepted 9 April 2010
Editor: M.L. Delaney

Keywords:
Cretaceous
Sierra de Juárez
detrital zircon geochronology
rift

A R T I C L E I N F O

Article type: Original Article

A B S T R A C T

The Chivillas Formation is the easternmost record of Mesozoic marine volcanism in Mexico. It consists of thick intervals of pillow lavas interbedded with siliciclastic turbidites, and debrisites, containing clasts derived from metamorphic, sedimentary and volcanic sources. Clast composition and detrital zircon geochronology indicate a continental provenance, with sources located south of the studied rocks. Detrital zircon ages range from 1573 ± 60 to 125 ± 1.6 Ma. The probability curves have peaks at 124 to 130 Ma (mean 126 Ma); 188 Ma and 921–1236 Ma (the latter with peaks at ~1022 and ~1157 Ma). Subordinate peaks at 277, 419 and 535 Ma are also present. We interpret the youngest zircon population ~126 Ma (Barremian), as the maximum depositional age. Other peaks suggest Grenvillian-type basement and Permo-Triassic arc sources. Late Jurassic detrital zircons were probably derived from the Sierra de Juárez Mylonitic belt. Pillow lavas are mostly alkaline basalts, with SiO2 46–53%, and alkali oxide (K2O + Na2O) 5–8 wt.%; all samples have low TiO2 (~1.6 wt.%), and low V (180–242 ppm), with Ti/V between 30 and 50. 206Pb/204Pb isotopic ratios are 18.6–20.5, and 208Pb/204Pb are 38.4–40.3, within OIB and MORB ranges. Initial εNd(126) are 0.3 to 4.1, and εHf(126) are 5–10 and 6–10, within OIB and MORB ranges. Initial εHf(126) are 0.3 to 4.1, and εHf(126) are 5–10 and 6–10, within OIB and MORB ranges. Initial εHf(126) are 0.3 to 4.1, and εHf(126) are 5–10 and 6–10, within OIB and MORB ranges. Initial εHf(126) are 0.3 to 4.1, and εHf(126) are 5–10 and 6–10, within OIB and MORB ranges.

1. Introduction

Alkaline magmatism associated with the breakup of Pangea initiated in the Early Mesozoic (McHone, 2000), forming a large continental igneous province (CAMP) with its highest peak of volcanism at about 200 Ma (Marzoli et al., 1999). Rifting continued, and although the continents were moving away from the active ridges, sporadic alkaline magmatism occurred in the widely separated continental margins around Atlantic Ocean, with peaks of larger-widespread volumes at ~125 Ma and ~85–80 Ma (Epp and Smoot, 1989; McHone, 2000; Janney and Castillo, 2001; Matton and Jébrak, 2009). The Gulf of Mexico was part of this rifting process, beginning in the Triassic, and ending around Berriasian time (Marton and Buffler, 1994; Pindell, 1994; Bird et al., 2005). The presence of oceanic crust has been inferred on the basis of geophysical data (Bird et al., 2005), but field evidence of syn-rift volcanism has not been previously reported. In this paper we describe for the first time alkalic volcanic rocks and associated sedimentary rocks in the continental margin of the Gulf of Mexico (Chivillas Formation), and we discuss their relationship with the rift history of the Gulf of Mexico.

The Chivillas Formation crops out east from Tehuacán City (Puebla State) in the Zongolica Range, approximately at N18°30′W97°22′ longitude (Figs. 1 and 2). The Chivillas Formation was described as a Tithonian–Valanginian marine clastic sequence, interbedded with pillow basalts (Alzaga and Pano, 1989). It has been interpreted, on the basis of its rock-association, as an intracratonic basin related to the opening of the Caribbean Sea (Carfantean, 1981; Dickinson and Lawton, 2001), or as marginal or backarc basin linked to the tectonic evolution of the Pacific (Delgado-Argote, 1981; Alzaga and Pano, 1989). This paper is the first detailed...