Método de la bisección para encontrar raíces de funciones en Microsoft Excel

- 1. <u>Método de la Bisección</u>
- 2. <u>Programa para encontrar raíces utilizando el método de la bisección en</u> <u>Microsoft Excel</u>
- 3. <u>Fórmulas para programar el método de la bisección en Microsoft Excel</u>

Método de la Bisección

El método de la bisección o corte binario es un método de búsqueda incremental que divide el intervalo siempre en 2. Si la función cambia de signo sobre un intervalo, se evalúa el valor de la función en el punto medio. La posición de la raíz se determina situándola en el punto medio del subintervalo donde exista cambio de signo. El proceso se repite hasta mejorar la aproximación.

El método de bisección se conoce también como Corte Binario o método de Bolzano.

Algoritmo

Paso 1

Elegir los valores iniciales Xa y Xb, de tal forma de que la función cambie de signo:

Paso 2

La primera aproximación a la raíz se determina con la fórmula del punto medio de esta forma:

$$\chi_{pm} = \frac{X_a + X_b}{2}$$

Paso 3

Realizar las siguientes evaluaciones para determinar el intervalo de la raíz:

- a. Si f(Xa)f(Xb) < 0, entonces la solución o raíz está entre Xa y Xpm, y Xb pasa a ser el punto medio (Xpm).
- b. Si f(Xa)f(Xb) > 0, entonces la solución o raíz está fuera del intervalo entre Xa y el punto medio, y Xa pasa a ser el punto medio (Xpm).

Paso 4

Si f(Xa)f(Xb) = 0 ó Error = | Xpm - Xpm - 1 | < Tolerancia

Donde Xpm es el punto medio de la iteración actual y Xpm – 1 es el punto medio de la iteración anterior.

Al cumplirse la condición del Paso 4, la raíz o solución es el último punto medio que se obtuvo.

Para el error relativo porcentual se tiene la siguiente fórmula:

$$\frac{\text{Error}}{X_{\text{pm}}} * 100$$

Programa para encontrar raíces utilizando el método de la bisección en Microsoft Excel

A manera de recordatorio, para que aparezcan solamente 6 cifras significativas, en Excel esto se hace en el menú Formato, Celdas..., Número, Categoría Número, Posiciones decimales 6. Para poner el signo porcentual: menú Formato, Celdas..., Número, Categoría Porcentaje.

EJEMPLO 1

Encontrar la raíz de f(x) = x^10 – 1 utilizando el Método de la Bisección con a = 0; b = 1.3; Tol = 0.01

	Α	В	С	D	E	F	G	Н	1	J
1	MÉTODO DE LA BISECCIÓN PARA ENCONTRAR RAÍCES DE FUNCIONES									
2	EJERCICIO 1									
3	a≡	0	b=	1.3	Tol=	0.01			Función=	x*10-1
4										
5	n	a	ь	pm	f(a)	f(b)	f(pm)	Error	Error relativo	Respuesta/Raíz de la función
6	1	0.000000	1.300000	0.650000	-1.000000	12.785849	-0.986537			
7	2	0.650000	1.300000	0.975000	-0.986537	12.785849	-0.223670	0.325000	33.333333%	
8	3	0.975000	1.300000	1.137500	-0.223670	12.785849	2.626720	0.162500	14.285714%	
9	4	0.975000	1.137500	1.056250	-0.223670	2.626720	0.728491	0.081250	7.692308%	
10	5	0.975000	1.056250	1.015625	-0.223670	0.728491	0.167707	0.040625	4.000000%	
11	6	0.975000	1.015625	0.995313	-0.223670	0.167707	-0.045898	0.020313	2.040816%	
12	7	0.995313	1.015625	1.005469	-0.045898	0.167707	0.056053	0.010156	1.010101%	
13	8	0.995313	1.005469	1.000391	-0.045898	0.056053	0.003913	0.005078	0.507614%	1.000391

La raíz aproximada de la función es 1.000391 con un error de 0.01.

Como se puede apreciar en la gráfica, la raíz exacta de la función es de 1, pero con 8 iteraciones se llegó a 1.000391. Si se continuara con más iteraciones, se podría llegar a un valor aun más cercano al 1 exacto, pero el error tendría en ese caso que ser menor que 0.01, que es el 1%.

EJEMPLO 2

Resolver $f(x) = e^{-x} + 4x^3 - 5$; a = 1; b = 2; Tol = 0.001 utilizando el método de la Bisección.

	Α	В	С	D	E	F	G	Н		J
14	EJE	RCICIO	2							
15	a =	1	b=	2	Tol=	0.001			Función=	e*(-x)+4*x*(3)-5
16										
17	n	a	ь	pm	f(a)	f(b)	f(pm)	Error	Error relativo	Respuesta/Raíz de la función
18	1	1.000000	2.000000	1.500000	-0.632121	27.135335	8.723130			
19	2	1.000000	1.500000	1.250000	-0.632121	8.723130	3.099005	0.250000	20.000000%	
20	3	1.000000	1.250000	1.125000	-0.632121	3.099005	1.019965	0.125000	11.111111%	
21	4	1.000000	1.125000	1.062500	-0.632121	1.019965	0.143442	0.062500	5.882353%	
22	5	1.000000	1.062500	1.031250	-0.632121	0.143442	-0.256598	0.031250	3.030303%	
23	6	1.031250	1.062500	1.046875	-0.256598	0.143442	-0.059688	0.015625	1.492537%	
24	7	1.046875	1.062500	1.054688	-0.059688	0.143442	0.041094	0.007813	0.740741%	1.054688

La raíz aproximada de la función es 1.054688 con un error de 0.001.

EJEMPLO 3

Resolver $f(x) = 3x + sen(x) - e^x$; a = 0; b = 1; Tol = 0.001 utilizando el método de Bisección.

	Α	В	C	D	E	F	G	Н		J
25	EJE	RCICIO	3							
26	a=	0	b=	1	Tol=	0.001			Función=	3*x+sin(x)-2.718281828*(x)
27										
28	n	a	Ь	pm	f(a)	f(b)	f(pm)	Error	Error relativo	Respuesta/Raíz de la función
29	1	0.000000	1.000000	0.500000	-1.000000	1.123189	0.330704			
30	2	0.000000	0.500000	0.250000	-1.000000	0.330704	-0.286621	0.250000	100.000000%	
31	3	0.250000	0.500000	0.375000	-0.286621	0.330704	0.036281	0.125000	33.333333%	
32	4	0.250000	0.375000	0.312500	-0.286621	0.036281	-0.121899	0.062500	20.00000%	
33	5	0.312500	0.375000	0.343750	-0.121899	0.036281	-0.041956	0.031250	9.090909%	
34	6	0.343750	0.375000	0.359375	-0.041956	0.036281	-0.002620	0.015625	4.347826%	
35	7	0.359375	0.375000	0.367188	-0.002620	0.036281	0.016886	0.007813	2.127660%	
36	8	0.359375	0.367188	0.363281	-0.002620	0.016886	0.007147	0.003906	1.075269%	
37	9	0.359375	0.363281	0.361328	-0.002620	0.007147	0.002267	0.001953	0.540541%	0.361328

Gráfico de la Función

La raíz aproximada de la función es 0.361328 con un error de 0.001.

FÓRMULAS PARA PROGRAMAR EL MÉTODO DE LA BISECCIÓN EN MICROSOFT EXCEL

En la tabla que se presentará a continuación, no aparecen las fórmulas para cada una de las celdas porque serían demasiadas fórmulas. Basta con presentar algunas y todas las demás se deducen fácilmente. Además, al estar trabajando en Excel, bastará con copiar y luego pegar las fórmulas o celdas de una de las filas superiores porque las celdas de todas las demás filas serán las mismas, y Excel automáticamente irá cambiando correctamente todos los valores de forma apropiada. La tabla de fórmulas utilizada es la siguiente:

Celda	Fórmula
B15	= 1

D15	= 2
F15	= 0.001
A18	= 1
B18	= B15
C18	= D15
D18	= PROMEDIO (B18:C18) ó PROMEDIO(B18,C18)
E18	= 2.718281828^(-B18)+4*(B18)^(3)-5
F18	= 2.718281828^(-C18)+4*(C18)^(3)-5
G18	= 2.71828182^(-D18)+4*(D18)^(3)-5
A19	= A18+1
B19	= SI(B18*G18>0,D18,B18)
C19	= SI(B19=D18,C18,D18)
D19	= PROMEDIO(B19,C19)
E19	= 2.718281828^(-B19)+4*(B19)^(3)-5
F19	= 2.718281828^(-C19)+4*(C19)^(3)-5
G19	= 2.718281828^(-D19)+4*(D19)^(3)-5
H19	= ABS(D19-D18)
119	= H19/D19
J19	= SI(I19<=F\$3,D19,"")
J24	SI(I19<=F\$3,D24,"")