Ondas III: ondas estacionarias (sonido) Versión 2.0

Héctor Cruz Ramírez¹ Instituto de Ciencias Nucleares, UNAM ¹hector.cruz@ciencias.unam.mx

febrero 2017

Índice

1.	Resumen 1.1. Objetivos de la práctica	1 1
2.	Teoría	2
3.	Arreglo experimental	3
4.	Pormenores de la práctica	4
5 .	Agradecimientos	4

1. Resumen

El objetivo es obtener ondas estacionarias con ondas sonoras. Además, de deducir la velocidad del sonido con los datos experimentales obtenidos. En concreto:

1.1. Objetivos de la práctica

Considerando que se va producir un sonido armónico, con frecuencia ν , dentro de una cavidad cilindrica de longitud L cerrado por ambos extremos (dentro de la cavidad puede haber aire o gases); entonces, los objetivos de la práctica son los siguientes:

- 1. Obtener el modo fundamental y algunos armónicos variando L y $\nu.$
- 2. Medir la velocidad de propagación del sonido en el medio.

2. Teoría

Lo que se entiende por una **onda**, ψ , esta contenida en la ecuación [1, 2],

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)\psi(x, y, z, t) = \frac{1}{v^2} \frac{\partial^2 \psi(x, y, z, t)}{\partial t^2},\tag{1}$$

donde $\psi = \psi(x,y,z,t)$ es la función de
onda y v es la velocidad de propagación de la misma.

Las ondas pueden ser de dos tipos: ondas longitudinales y transversales.

En esta práctica estudiaremos ondas en el aire, el sonido. En este caso ψ es la presión en el aire y son ondas longitudinales. La velocidad del sonido es v en la ecuación 1, ver referencia [1, 2].

La solución que nos interesa para esta práctica son las ondas estacionarias. Para obtener las ondas estacionarias con las ondas de presión se debe confinar a las mismas entre paredes que no las reflejen y no las transmitan (paredes rígidas). Primero debemos tener una fuente de sonido (bocina) incrustada en una pared rígida y a una distancia L se debe tener otra pared rígida. Debe cumplirse que las paredes deben estar fijas en todo tiempo. Implementando las condiciones anteriores tenemos que esto se traduce matemáticamente a las condiciones en la frontera siguientes,

$$\psi(0,t) = 0,$$

$$\psi(L,t) = 0;$$
(2)

entonces, la onda estacionaria tiene la forma

$$\psi(x,t) = \psi_0 \operatorname{sen}(kx) \cos(\omega t), \tag{3}$$

donde ψ_0 es la amplitud, $k=2\pi/\lambda$ es el vector de onda, $\omega=2\pi/\nu$ es la frecuencia angular, λ es la longitud de onda y ν es la frecuencia. Considerando las condiciones en la frontera y $\nu=\lambda\nu$, tenemos

$$\lambda_n = \frac{2L}{n}, \quad \text{con} \quad n = 1, 2, 3, \dots \tag{4}$$

у

$$\nu_n = \frac{n \, v}{2 \, L}, \quad \text{con} \quad n = 1, 2, 3, \dots$$
 (5)

Para n=1 la onda estacionaria es el modo fundamental y para $n=2,3,\ldots$ son los llamados armónicos.

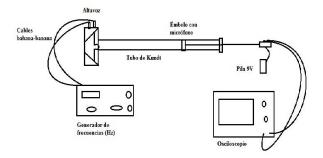


Figura 1: Arreglo experimental. Figura tomada del reporte [3].

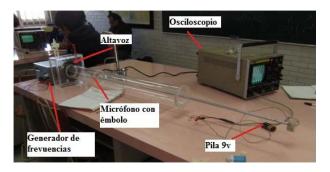
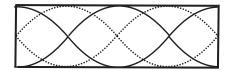


Figura 2: Fotografía del arreglo experimental. Imagen tomada del reporte [3].

3. Arreglo experimental


En la Figura (1) se muestra el arreglo experimental para obtener los modos normales o armónicos y en la Figura (2) se muestra una fotografía del mismo.

El arreglo experimental (Figura 2) consiste en un tubo de Kundt donde uno de los extremos hay una bocina; y el otro extremo puede estar cerrado o abierto. En este experimento consideramos el caso de ambos extremos cerrados y donde se incrustan una bocina y un micrófono. La bocina es alimentada con la señal de un generador de funciones. La señal que produce el micrófono es observada con un osciloscopio, y en donde se puede observar si la amplitud es un máximo o un mínimo (el micrófono tiene integrado un amplificador). La distancia L entre las paredes puede ser variada en el tubo de Kundt a través del émbolo. Para obtener los armónicos se procede como se describe a continuación. Primero, el émbolo se coloca a una longitud fija L; después, la bocina se alimenta con una señal senoidal donde se va variando su frecuencia v. En este punto hay que tener claro que existen dos parámetros importantes la presión, P y el movimiento de las moleculas que conforman el medio δ . En la Figura (3) la línea continua representa la presión y la discontinua el desplazamiento. Los puntos de maxima presión (valle) corresponden a puntos de minímo desplazamiento (nodo) y vice-

versa. Entonces, al ir variando la frecuencia apartir de cero debemos eencontrar maximos de presión. El primero será el fundamental; y asi sucesivamente. Con los datos experimentas se deberá deducir la velocidad del sonido en el aire.

El alumno puede repetir el exprimento introduciendo otros gases.

a. Cerrado ambos extremos

b. Un extremo cerrado y el otro abierto

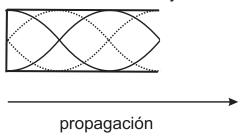


Figura 3: Ondas estacionarias en el tubo de Kundt. a. Caso donde ambos extremos estan cerrados. b. Donde un extremo está cerrado y el otro abierto. la línea continua es la variación de la presión, P y línea discontinua el desplazamiento de la moleculas δ desde su punto de equilibrio.

4. Pormenores de la práctica

Cantidad de sesiones en el laboratorio: 2 sesiones.

5. Agradecimientos

Estas notas fueron realizadas con el apoyo de los proyectos PAPIME PE106415 (version 1) y PAPIME PE105917 (version 2). Agradecemos a los estudiantes Jorge Arturo Monroy Ruz y Francisco Javier Morelos Medina por su contribución en la elaboración de estas notas.

Referencias

- [1] M. Alonso M. y E. J. Finn "Física," Addison-Wesley Iberoamericana (1995)
- [2] R. A. Serway, "Física, incluye Física Moderna (Tomo I)," McGraw-Hill, Segunda Edición (1993).
- [3] Figuras tomadas del reporte escrito de P. A. De la Guerra, A. Flores y S. A. Sotres de la práctica 8 en el semestre 2013-I (2012)