DEPARTAMENTO DE GEOMETRÍA ANALÍTICA

PRÁCTICA 2: "PRODUCTO VECTORIAL APLICADO A LA OBTENCIÓN DEL MOMENTO DE FUERZA"

REPORTE DE LA PRÁCTICA

- Datos del plantel, asignatura, alumno, docente, calificación
- Número y título de la práctica

1.- Problemática.

¿Existe una relación entre la fuerza y la distancia del brazo de palanca para que exista un momento que equilibre un sistema de fuerzas?

2.- Justificación

Desarrollar el impacto que tienen el estudio del producto vectorial en un sistema de fuerzas en equilibrio, así como aplicación en las materias de Estática, Cinemática y Dinámica, y en general en la Ingeniería aplicada.

3.- Objetivo

El alumno aplicará los conceptos de vector, producto vectorial (producto cruz), así como los conceptos de módulo y dirección de un vector.

OBJETIVOS ESPECÍFICOS.-

El alumno verificará experimentalmente la magnitud de un vector, así como la relación que existe entre la distancia a un punto y la fuerza para producir un momento de fuerza.

4.- Marco teórico

Investigar cada uno de los conceptos de:

- a) Vector
- b) Magnitud de un vector
- c) Producto vectorial
- d) Fuerza
- e) Momento
- f) Sistema de fuerzas en equilibrio
- g) Masa
- h) Peso
- i) Unidades en el sistema internacional de fuerza, masa, momento y distancia.

5.- Marco de referencia

Investigar:

- a) Precursores del estudio de momento de fuerza.
- b) Tres ejemplos de la aplicación de momento de fuerza en la Ingeniería.

6.- Material y equipo a utilizar

- Taras
- Masas
- Nivel de mano
- Dinamómetro
- Flexómetro
- Barra graduada con hoyos
- Pizarrón magnético.

7.- Metodología

- a) Resolver el siguiente cuestionario previo
 - ¿Cuál es el producto vectorial del vector $\overline{u} = (2, -5, 8)$ y el vector $\overline{v} = 3i j + 4k$?
 - ¿Cuál es la magnitud del vector u = (-2,5,8)?
 - ¿Cuál es el vector unitario de $\overline{v} = 2i + j + 4k$?
 - ¿Cuál es el producto vectorial del vector u = (2, -5, 8) con un vector unitario v contenido en el plano XY?
 - ¿Cuál es el producto vectorial del vector u = (2, -5, 8) con el vector i?
- b) Observación
- c) Hipótesis

Existe una relación entre el módulo de la fuerza \overline{r} y el módulo de la fuerza \overline{f} con respecto al módulo del momento de fuerza. A mayor módulo de la fuerza \overline{f} y módulo constante de la fuerza \overline{r} , mayor módulo de momento de fuerza; a mayor módulo de la fuerza \overline{f} y módulo constante de la fuerza \overline{f} y módulo de momento de fuerza. A menor módulo de la fuerza \overline{f} y módulo constante de la fuerza \overline{f} , menor módulo de momento de fuerza; a menor módulo de la fuerza \overline{f} y módulo constante de la fuerza \overline{f} , menor módulo de momento de fuerza.

d) Descripción de la práctica y resultados experimentales

- Desarrollar la observación de la práctica.
- Escribir los datos experimentales.

Tabla 1:

Masa	$ \overline{F} (N)$	$ \overline{F} (N)$	$\overline{F} = (a,b,c)$	r(m)	r = (a,b,c)	$\overline{M} = \overline{r} \times \overline{f}$	$ \overline{M} $
(gr)	Experimental	Teórica					N-m
100				0.25			
150				0.25			

Tabla 2:

Masa	$\left \overline{F}\right (N)$	$ \overline{F} (N)$	$\overline{F} = (a,b,c)$	r(m)	r = (a,b,c)	$\overline{M} = \overline{r} \times \overline{f}$	$\left \overline{M} ight $
(gr)	Experimental	Teórica					N-m
100				0.25			
100				0.10			

Considerar la aceleración como: $9.78 \frac{m}{s^2}$

- Procesamiento o cálculos matemáticos de los datos, así como la comparación de los datos teóricos con los experimentales.
- Solución de cuestionario
- Conclusiones y observaciones

8.- Bibliografía

PRÁCTICA 2: "PRODUCTO VECTORIAL APLICADO A EL MOMENTO DE FUERZA"

Esta práctica de Geometría Analítica se efectuará en el Laboratorio de Mecánica.