Nombre:	Firma:
---------	--------

1. Sean el conjunto $A = \{-1, 0, 1\}$ y las operaciones binarias \oplus y \odot definidas por:

Ф	-1	0	1
-1	-1	0	1
0	0	1	-1
1	1	-1	0

0	-1	0	1
-1	-1	-1	-1
0	-1	0	1
1	-1	1	1

Determinar:

- a) Si son cerradas las operaciones binarias \oplus y \odot .
- b) El elemento idéntico para la operación ⊕ y para la operación ⊙.
- c) El elemento inverso para cada elemento de A respecto a la operación \oplus .
- d) Calcular la operación $(-1 \oplus (-1)) \oplus (1 \oplus 0)$
- e) Número de combinaciones para determinar la asociatividad así como la conmutatividad para la operación \oplus .
- **2.** Sea el conjunto de los números enteros $\mathbb{Z} \ \$ y la operación binaria $a\Delta b\!=\!a\,+\,b\,-\,3$

Determinar si (\mathbb{Z}, Δ) es un grupo.

$$a\Delta b = a + b - 3$$

3.- Determinar si el sistema (R, \otimes, \oplus) tiene estructura de campo con las siguientes operaciones binarias.

$$x \otimes y = x + y + 1$$
, $x \oplus y = x + y + xy$, $\forall x, y \in R$

4.- Investigue otro ejemplo de campo. Escribir la referencia de dónde se investigó en formato APA. No plagios con los compañeros.