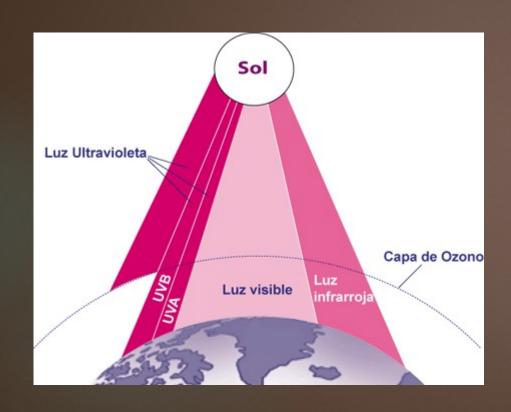
Radiació n

Menú

- Problema
- Objetivos
- ► ¿Qué es la radiación?
- Plank y la revolución cuántica

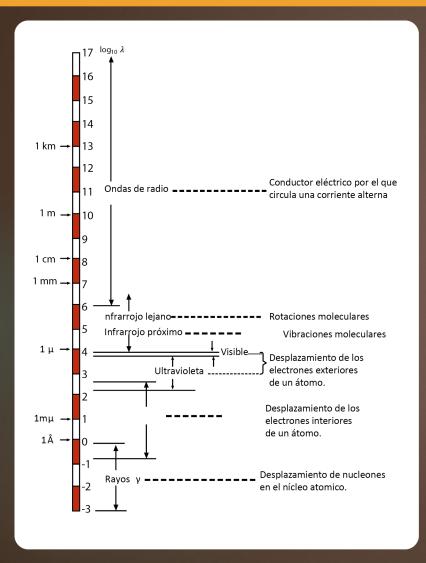

Problema

► Todos los objetos radían energía de manera proporcional a la cuarta potencia de su temperatura expresada en grados Kelvin.

Objetivos

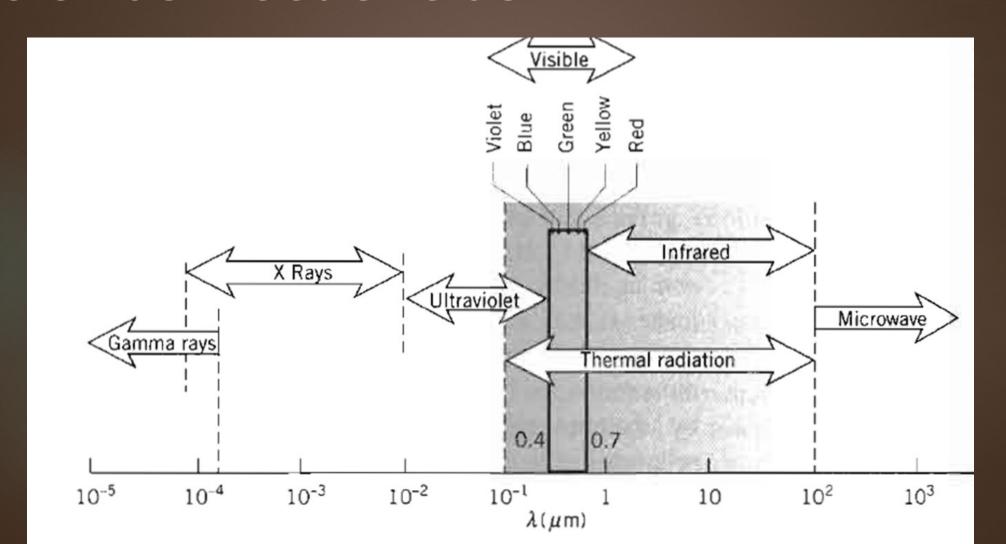
- Conocer qué es la transferencia de energía por radiación.
- Entender el concepto de cuerpo negro y cuerpo gris.
- Conocer la distribución de Planck
- Conocer la ley de Wien
- Saber calcular la cantidad de energía radiada en una zona dada del espectro
- Saber calcular la longitud de onda del máximo de la distribución

¿Qué es la radiación?

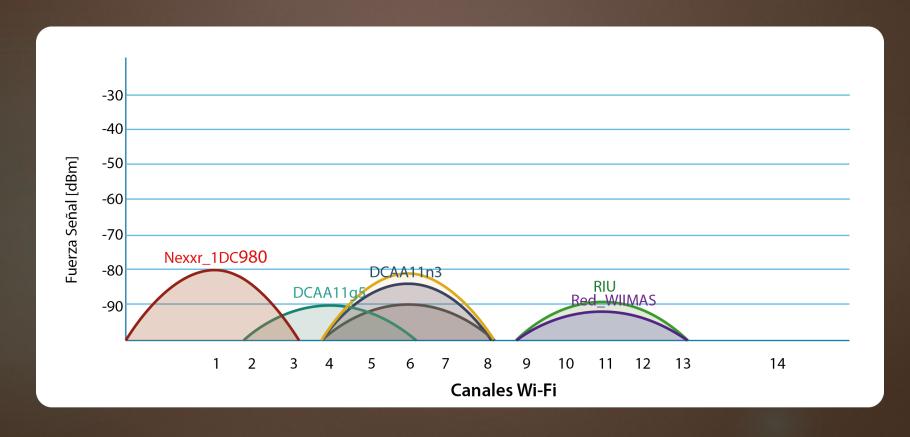


La energía asociada a las ondas electromagnéticas.

Planck y la revolución de la física cuántica.


- ▶ ¿Qué es el cuerpo negro?
- ¿Qué es el espectro de radiación de cuerpo negro?
- En 1900 Max Planck propone una fórmula para explicar el espectro de radiación de cuerpo negro.
- Esa hipótesis es la de la cuantización de la energía y dio origen a toda una nueva rama de la física: La mecánica cuántica.
- ¿Cuál fue la hipótesis de Planck?
- ¿Qué repercusiones tiene la hipótesis de Plank en el estudio de la transferencia de calor por radiación?

Empecemos con el espectro de radiación.


El espectro de radiación es parte del espectro electromagnético.

La radiación térmica ocurre en ciertas frecuencias

Ejemplo Banda ancha.

- ❖ ¿Qué longitud de onda tiene una radiación de 5Ghz?
- ¿En qué parte del espectro se ubica?

Interacción de la radiación con la materia.

La radiación que incide sobre la superficie de un sólido opaco puede ser absorbida o reflejada.

Absorción

Absorción: cuando la adición de energía radiante a un sistema atómico o molecular da lugar a que el sistema pase a un estado más elevado de energía.

Coeficiente de absorción: fracción de la radiación incidente que se absorbe

$$a=rac{oldsymbol{q}^{(a)}}{oldsymbol{q}^{(i)}} \qquad a_v=rac{oldsymbol{q}_v^{(a)}}{oldsymbol{q}_v^{(i)}}$$

Emisión

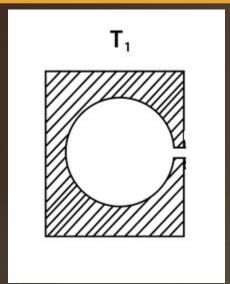
Emisión: cuando un sistema atómico o molecular pasa desde un estado elevado de energía a otro más bajo.

Todas las superficies solidas emiten energía radiante q^(e) (Por unidad de tiempo y unidad de área).

Si llamamos q_b(e) a la emisión del cuerpo tendremos:

$$e=rac{oldsymbol{q}^{(e)}}{oldsymbol{q}^{(e)}_{oldsymbol{b}}}\;;\qquad e_v=rac{oldsymbol{q}^{(e)}_v}{oldsymbol{q}^{(e)}_{oldsymbol{b}v}}$$

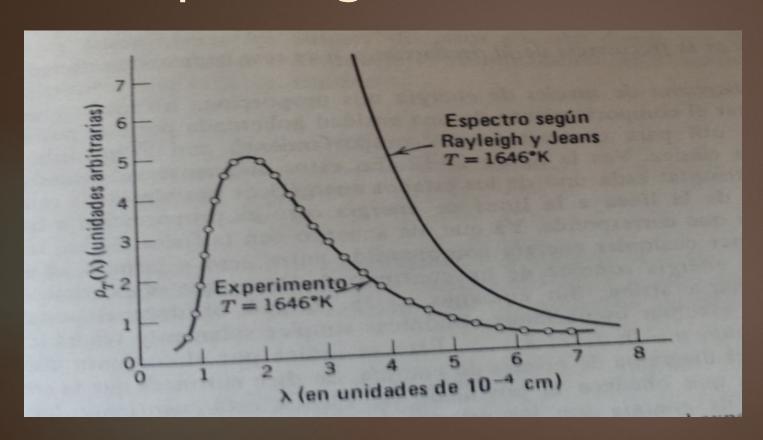
A e se le conoce como la emisividad


Para una T dada e = a (Ley de Kirchhoff) de manera global y para cada frecuencia.

¿Qué es el cuerpo negro (gris)?

Cuerpo gris el que absorbe siempre la misma fracción de la radiación incidente, cualquiera que sea la frecuencia.

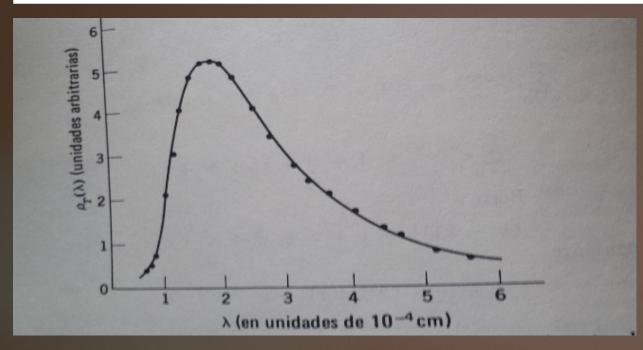
Cuerpo negro: Caso límite en el que $a_v = 1$ para todas las frecuencias y temperaturas


Radiación de una cavidad.

- En una cavidad isotérmica, con un pequeño orificio la radiación es independiente de la naturaleza de las paredes y varía solamente con la temperatura de las mismas.
- Se le puede usar para obtener una excelente aproximación de un cuerpo negro.
 - La siguiente relación expresa la emisividad efectiva del orificio e_{orif}, en función de la emisividad real e de las paredes de la cavidad, y la fracción f del área interna total de la cavidad que se elimina:
- $e_{\text{orif}} = \frac{e}{e + f(1 e)}$

Si e = 0.8 y f = 0.001, el valor de e_{orif} resulta 0,99975. Por lo tanto, se absorberá el 99,975 por ciento de la radiación que incide sobre el orificio.

El espectro de radiación del cuerpo negro.



Distribución de la energía radiada según la longitud de onda.

Catástrofe Ultravioleta

Plank

E=h ν (h la constante de Planck, cuyo valor es 6,624 x 10^{-27} erg seg)

$$E_{\lambda,b}(\lambda,T) = \frac{C_1}{\lambda^5 [\exp(C_2/\lambda T) - 1]}$$

$$C_1 = 2\pi h c_o^2 = 3.742 \times 10^8 \text{ W} \cdot \mu \text{m}^4/\text{m}^2$$

$$C_2 = (hc_o/k) = 1.439 \times 10^4 \,\mu\text{m} \cdot \text{K}.$$

Ley de distribución de Planck

Densidad de flujo de energía q $^{(e)}_{b \lambda}$ d λ que emite una superficie negra en el intervalo de longitud de onda comprendido entre λ y λ + d λ

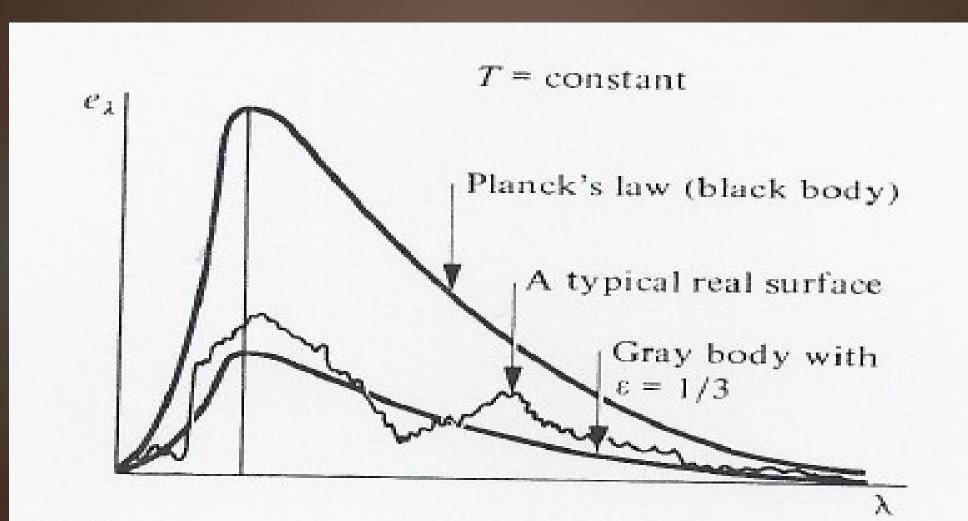
$$q_{b\lambda}^{(e)}=rac{2\pi c^2 h}{\lambda^5} \;\; rac{1}{e^{ch/\lambda KT}-1}$$

$$q_b^{(e)} = \int_0^\infty q_{b\lambda}^{(e)} d\lambda = \left(\frac{2}{15} \frac{\pi^5 K^4}{c^2 h^3}\right) T^4$$

Ley de Stefan-Boltzmann.

La constante de Stefan-Boltzmann es 4,878 x 10⁻⁸ kcal hr⁻¹ m⁻² °K⁻⁴

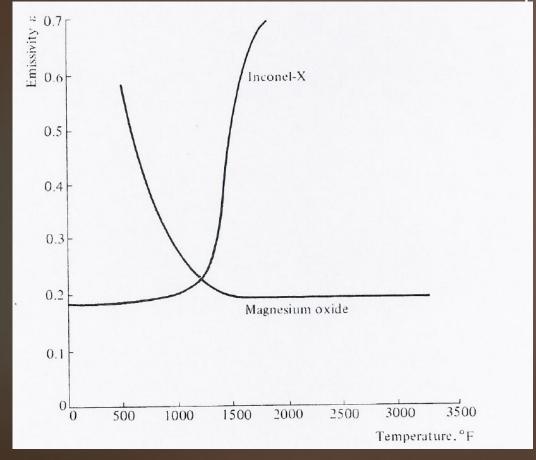
o bien 1,355 x 10⁻¹² cal seg⁻¹ cm⁻² °K⁻⁴


Lo que dice la ley de Stefan-Boltzmann es que la cantidad de enrgía radiada será proporcional a la Temperatura a la cuarta potencia.

Todo cuerpo radia.

Pero no todos son cuerpo negro.

La vida real

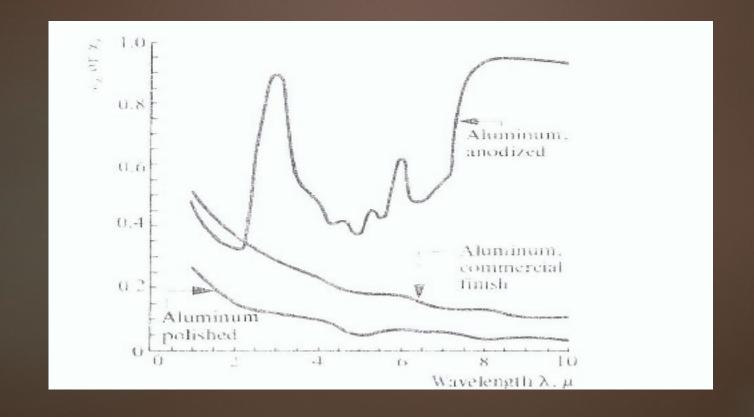


Emisividad

- $\mathbf{\dot{*}} \mathbf{q}^{(e)} = \mathbf{e} \boldsymbol{\sigma} \mathbf{T}^{4} (\mathbf{e} \text{ es la emisividad})$
- * La emisividad depende de la frecuencia y del ángulo de emisión
- Las superficies metálicas no oxidadas y limpias poseen emisividades muy bajas
- A temperatura ambiente o superior la mayoría de los no metales y los óxidos metálicos tienen emisividades del orden de 0,8.
- Para casi todos los materiales la emisividad aumenta con la temperatura.

Criterio para la «grisura» de un cuerpo radiante.

La emisividad como función de la temperatura es un buen



Algunos ejemplos.(Tomados del Bird)

EMISIVIDADES TOTALES DE VARIAS SUPERFICIES PARA **EMISIÓN**PERPENDICULAR

	T(°K)	е	T(°K)	е
Aluminio				
Altamente pulimentado, pureza 98,3%	500	0,039	850	0,057
Oxidado a 600 °C	472	0,11	872	0,19
Material para techos recubiertos de Al	311	0,216		
Cobre				
Electrolítico, altamente pulimentado	353	0,018		
Oxidado a 600 °C	472	0,57	872	0,57
Hierro				
Electrolítico, altamente pulimentado	450	0,052	500	0,064
Totalmente oxidado	293	0,685		
Fundición, pulimentada	473	0,21		
Fundición, oxidada a 600 °C	472	0,64	872	0,78
Cartón de amianto	311	0,93	644	0,945

- La emisividad varia con la longitud de onda.
- La emisividad varia con el terminado del material.

Datos de emisividades.

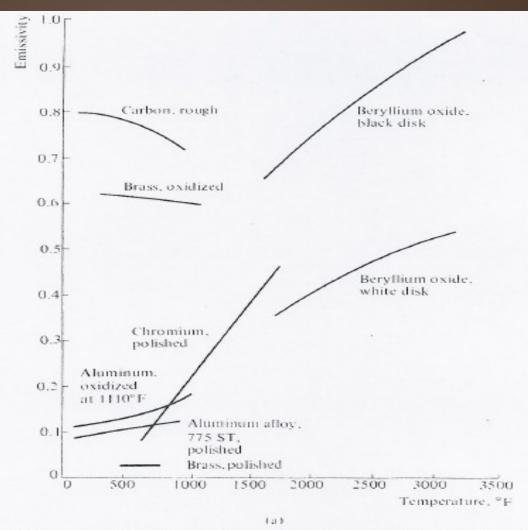


Fig. 11.8 The emissivity of several materials. (From G. G. Gubareff, J. E. Janssen, and R. H. Torborg, *Thermal Radiation Properties Survey*, Honeywell Research Center, Minneapolis, 1960.)

Table 11.1 The emissivity of some ceramic materials. (From H. C. Hottel and A. F. Sarofim, ibid.)

Material	Temperature, °F	Emissivity
Cuprous oxide	1470-2010	0.66-0.54
Magnesium oxide	5301520	0.55 - 0.20
	1650-3100	0.20
Nickel oxide	1200-2290	0.59 - 0.86
Thorium oxide	530- 930	0.58 - 0.36
	930-1520	0.36-0.21
Alumina-silica-iron oxide		
58-80 % Al ₂ O ₃ , 16-38 % SiO ₂ , 0.4 % Fe ₂ O ₃	1850-2850	0.61-0.43
26-36% Al ₂ O ₃ , 50-60% SiO ₂ , 1.7% Fe ₂ O ₃	1850-2850	0.73 - 0.62
61% Al ₂ O ₃ , 35% SiO ₂ , 3% Fe ₂ O ₃	1850-2850	0.78 - 0.68
Fireclay brick	1832	0.75
Magnesite refractory brick	1832	0.38
Quartz (opaque)	570-1540	0.92 - 0.80
Zirconium silicate	460- 930	0.92-0.80
Zan wantanin annene	930-1530	0.80-0.52

Ley de desplazamiento de Wien.

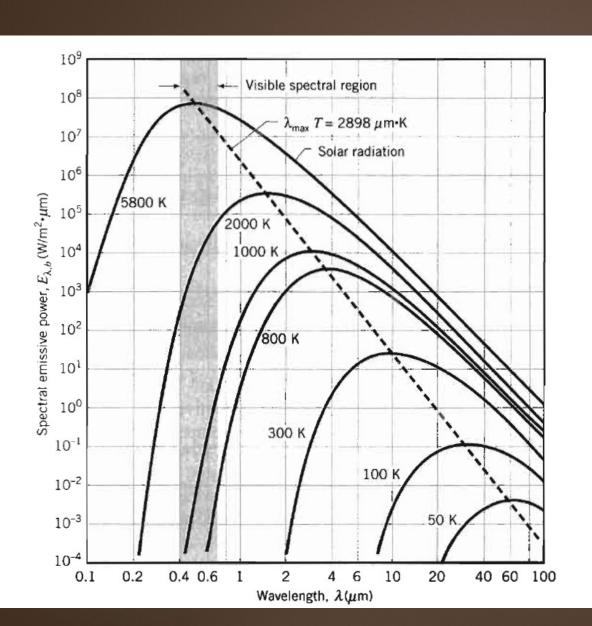
Ejemplo. Temperatura y emisión de energía radiante del Sol

El Sol puede considerarse como un cuerpo negro que emite radiación con una intensidad máxima para $\lambda = 0.5$ micrones (5000 A).

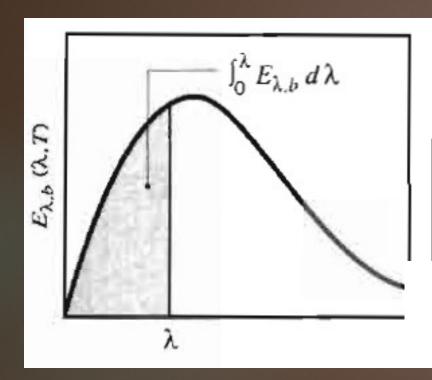
Estimar:

- a) la temperatura de la superficie del Sol
- b) la densidad de flujo calorífico que emite la superficie del Sol.

Solución


a. A partir de la ley de desplazamiento de Wien,

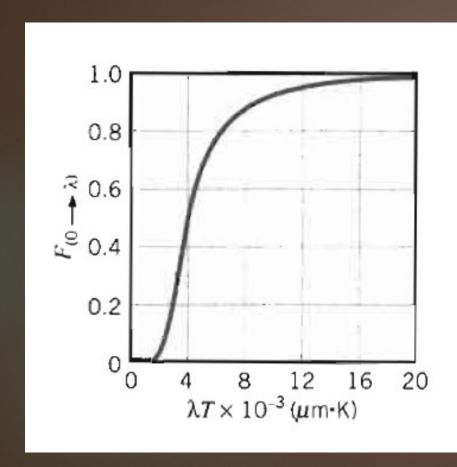
$$T = \frac{0,2884}{\lambda_{\text{máx}}} = \frac{(0,2884 \ cm^{\circ}K)}{(0,5 \ x \ 10^{-4} \ cm)} = 5760 \ {^{\circ}K} = 10 \ 400 \ {^{\circ}R}$$


b. A partir de la ley de Stefan-Boltzmann,

$$q_b^{(e)} = \sigma T^4$$

= (4,878 x 10⁻⁸)
(5760)⁴
= 5,4 x 10⁷ kcal hr⁻¹m⁻²

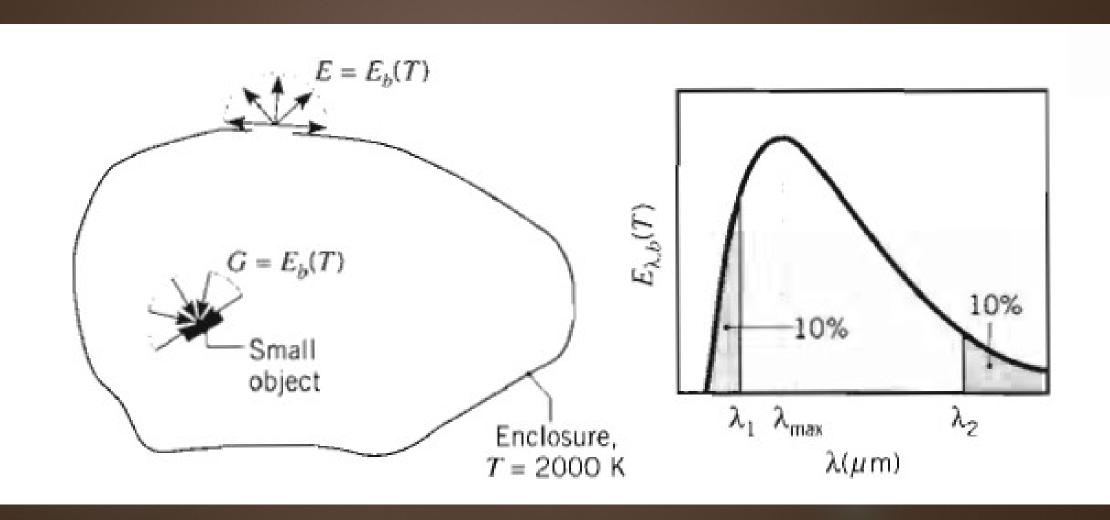
La radiación Térmica y el espectro visible.


Emisión en una banda de frecuencias (λ)

$$F_{(0\to\lambda)} \equiv \frac{\int_0^{\lambda} E_{\lambda,b} d\lambda}{\int_0^{\infty} E_{\lambda,b} d\lambda} = \frac{\int_0^{\lambda} E_{\lambda,b} d\lambda}{\sigma T^4} = \int_0^{\lambda T} \frac{E_{\lambda,b}}{\sigma T^5} d(\lambda T) = f(\lambda T)$$

$$F_{(\lambda_1 \to \lambda_2)} = \frac{\int_0^{\lambda_2} E_{\lambda,b} d\lambda - \int_0^{\lambda_1} E_{\lambda,b} d\lambda}{\sigma T^4} = F_{(0 \to \lambda_2)} - F_{(0 \to \lambda_1)}$$

Valores.



λT		$I_{\lambda,b}(\lambda,T)/\sigma T^5$	$\frac{I_{\lambda,b}(\lambda,T)}{I_{\lambda,b}(\lambda_{\max},T)}$	
$(\mu \mathbf{m} \cdot \mathbf{K})$	$F_{(0 \rightarrow \lambda)}$	$(\mu \mathbf{m} \cdot \mathbf{K} \cdot \mathbf{sr})^{-1}$		
200	0.000000	0.375034×10^{-27}	0.000000	
400	0.000000	0.490335×10^{-13}	0.000000	
600	0.000000	0.104046×10^{-8}	0.000014	
800	0.000016	0.991126×10^{-7}	0.001372	
1,000	0.000321	0.118505×10^{-5}	0.016406	
1,200	0.002134	0.523927×10^{-5}	0.072534	
1,400	0.007790	0.134411×10^{-4}	0.186082	
1,600	0.019718	0.249130	0.344904	
1,800	0.039341	0.375568	0.519949	
2,000	0.066728	0.493432	0.683123	
2,200	0.100888	0.589649×10^{-4}	0.816329	
2,400	0.140256	0.658866	0.912155	
2,600	0.183120	0.701292	0.970891	
2,800	0.227897	0.720239	0.997123	
2,898	0.250108	0.722318×10^{-4}	1.000000	
3,000	0.273232	0.720254×10^{-4}	0.997143	
3,200	0.318102	0.705974	0.977373	
3,400	0.361735	0.681544	0.943551	
3,600	0.403607	0.650396	0.900429	
3,800	0.443382	0.615225×10^{-4}	0.851737	
4,000	0.480877	0.578064	0.800291	
4,200	0.516014	0.540394	0.748139	
4,400	0.548796	0.503253	0.696720	
4,600	0.579280	0.467343	0.647004	
4,800	0.607559	0.433109	0.599610	

Ejemplo.

- Una cavidad se mantiene a una temperatura de 2000 K. A través de un pequeño orificio en la cavidad emerge radiación térmica.
- A) Calcule su potencia de emisión.
- B) ¿Cuál es el valor de λ_1 tal que el 10% de la radiación se encuentra por debajo de ese valor?
- ► C). ¿Cuál es el valor de λ_2 tal que el 10% de la radiación se encuentra por encima de ese valor?
- D) Determine el máximo de la potencia de emisión y la longitud de onda a la que ocurre.
- ► E)¿Cuál es la irradiación recibida por un objeto pequeño que se encuentra dentro de la cavidad?

Esquema.

Solución.

► A. La cavidad radiante es una buena aproximación al cuerpo negro, por lo tanto:

$$E = E_b(T) = \sigma T^4 = 5.670 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4 (2000 \text{ K})^4$$

 $E = 9.07 \times 10^5 \text{ W/m}^2$

B) y C) Valores de λ_1 y λ_2

TABLE 12.1	Blackbody F	Radiation Functions		TABLE 12.1	Continued		
λT $(\mu \mathbf{m} \cdot \mathbf{K})$	$F_{(0 o \lambda)}$	$I_{\lambda,b}(\lambda,T)/\sigma T^5$ $(\mu \mathbf{m} \cdot \mathbf{K} \cdot \mathbf{sr})^{-1}$	$\frac{I_{\lambda,b}(\lambda,T)}{I_{\lambda,b}(\lambda_{\max},T)}$	λΤ		$I_{\lambda,b}(\lambda,T)/\sigma T^5$	$I_{\lambda,b}(\lambda,T)$
200	0.000000	0.375034×10^{-27}	0.000000	$(\mu \mathbf{m} \cdot \mathbf{K})$	$F_{(0 \to \lambda)}$	$(\mu \mathbf{m} \cdot \mathbf{K} \cdot \mathbf{sr})^{-1}$	$I_{\lambda,b}(\lambda_{\max},T)$
400	0.000000	0.490335×10^{-13}	0.000000	9,500	0.903085	2000	0.105956
600	0.000000	0.104046×10^{-8}	0.000014	CC = 200 (11CC)		0.705550	
800	0.000016	0.991126×10^{-7}	0.001372	10,000	0.914199	0.653279×10^{-5}	0.090442
1,000	0.000321	0.118505×10^{-5}	0.016406	10,500	0.923710	0.560522	0.077600
1,200	0.002134	0.523927×10^{-5}	0.072534	11,000	0.931890	0.483321	0.066913
1,400	0.007790	0.134411×10^{-4}	0.186082				
1,600	0.019718	0.249130	0.344904	11,500	0.939959	0.418725	0.057970
1,800	0.039341	0.375568	0.519949	12,000	0.945098	0.364394×10^{-5}	0.050448
2,000	0.066728	0.493432	0.683123	13,000	0.955139	0.279457	0.038689
2,200	0.100888	0.3030 4 2 × 10	0.016329		0.962898	0.217641	0.030131
2,400	0.140256	0.658866	0.912155	14,000			
2,600	0.183120	0.701292	0.970891	15,000	0.969981	0.171866×10^{-5}	0.023794
2,800	0.227897	0.720239	0.997123	16,000	0.973814	0.137429	0.019026
2,898	0.250108	0.722318×10^{-4}	1.000000	18,000	0.980860	0.908240×10^{-6}	0.012574
3,000	0.273232	0.720254×10^{-4}	0.997143				
3,200	0.318102	0.705974	0.977373	20,000	0.985602	0.623310	0.008629

D) Máximo de la potencia de emisión.

- Por la ley de Wien: $\lambda_{max}T = 2898 \, \mu \text{m} \cdot \text{K}$.
- ► Como T = 2000 $\lambda_{max} = 1.45 \mu m$
- Conociendo ese valor de y usando la ecuación puede calcularse $E_{\lambda b} = 4.12 \ X \ 10^5 \ W/\ m^2$. Mm

$$E_{\lambda,b}(\lambda,T) = \pi I_{\lambda,b}(\lambda,T) = \frac{C_1}{\lambda^5 [\exp(C_2/\lambda T) - 1]}$$

Alternativamente usando los valores de la tabla para I h

E) Irradiación recibida.

- La cavidad se comporta como un cuerpo negro por lo tanto la irradiación sobre el obejto pequeño será: $q_h^{(e)} = \sigma T^4$
- \triangleright 5.67 X 10 -8 X (2000)⁴ = 9.07 X 10 ⁵ W7m²

Lecturas adicionales.

- Capítulo 12 del Incropera «Fundamentals of heat and mass transfer»
- Capítulo 9 del Kreith «Principios de transferencia de calor»
- Capítulo 14 del Bird «Transport Phenomena»
- Transport Phenomena in Metallurgy (Geiger-Poirier)

Cuestionario (1/2).

- 1. ¿ A qué se le llamó la catástrofe ultravioleta?
- 2. ¿Cómo se resolvió la catastrofe ultravioleta?
- 3. ¿Qué dice la ley de Stefan-Boltzmann?
- 4. ¿Cuál es la relación de la ley de Stefan-Boltzmann con la distribución de Plank?
- 5. ¿Qué dice la ley de Wien?
- 6. ¿Qué importancia tiene la ley de Wien?
- 7. ¿Qué es un cuerpo negro?
- 8. ¿Qué es el espectro de radiación de cuerpo negro?

Cuestionario (2/2).

- 1. ¿Existen los cuerpos negros en la naturaleza?
- 2. ¿Qué es la emisividad?
- 3. ¿Qué es la absorbancia?
- 4. ¿Qué dice la Ley de Kirchhoff?
- 5. ¿Qué materiales poseen mayor emisividad?
- 6. ¿Qué materiales poseen mayor absorbancia?
- 7. ¿Qué es un cuerpo gris?
- 8. ¿Existen los cuerpos grises en la naturaleza?
- 9. ¿Cómo se calcula la cantidad de energía radiada en cierta región del espectro electromagnético?